Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941199301> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2941199301 endingPage "608" @default.
- W2941199301 startingPage "599" @default.
- W2941199301 abstract "A large number of Android malware samples can be deployed as the variants of the previously known samples. In consequence, a classification system capable of supporting a large set of samples is required to secure Android platform. Although a large set of variants requires scalability for automatic detection and classification, it also presents a significant advantage about a richer dataset at the stage of discovering underlying malicious activities and extracting representative features. Deep Neural Networks are built by a complex structure of layers whose parameters can be tuned and trained in order to enhance classification statistical metric results. Emerging parallelization computing tools and processors reduce computation time. In this paper, we propose a deep learning Android malware detection method using features extracted from instruction call graphs. The presented method examines all possible execution paths and the balanced dataset improves deep neural learning benign execution paths versus malicious paths. Since there is not a publicly available model for Android malware detection, we train deep networks from scratch. Then, we apply a grid search method to seek the optimal parameters of the network and to discover the combination of the hyper-parameters, which maximizes the statistical metric values. To validate the effectiveness of the proposed method, we evaluate with a balanced dataset constituted by 24,650 malicious and 25,000 benign samples. We evaluate the deep network architecture with respect to different parameters and compare the statistical metric values including runtime with respect to baseline classifiers. Our experimental results show that the presented malware detection is reached at 91.42% level in accuracy and 91.91% in F-measure, respectively." @default.
- W2941199301 created "2019-05-03" @default.
- W2941199301 creator A5028123850 @default.
- W2941199301 creator A5084367490 @default.
- W2941199301 date "2020-07-01" @default.
- W2941199301 modified "2023-10-04" @default.
- W2941199301 title "Learning to detect Android malware via opcode sequences" @default.
- W2941199301 cites W1936417930 @default.
- W2941199301 cites W2005662348 @default.
- W2941199301 cites W2037026906 @default.
- W2941199301 cites W2114535528 @default.
- W2941199301 cites W2298292381 @default.
- W2941199301 cites W2313513770 @default.
- W2941199301 cites W2324464293 @default.
- W2941199301 cites W2330219538 @default.
- W2941199301 cites W2491218167 @default.
- W2941199301 cites W2557105261 @default.
- W2941199301 cites W2565516711 @default.
- W2941199301 cites W2575599800 @default.
- W2941199301 cites W2591102410 @default.
- W2941199301 cites W2601621757 @default.
- W2941199301 cites W2614347723 @default.
- W2941199301 cites W2738263528 @default.
- W2941199301 cites W2747715470 @default.
- W2941199301 cites W2749177573 @default.
- W2941199301 cites W2753669113 @default.
- W2941199301 cites W2753692828 @default.
- W2941199301 cites W2761652379 @default.
- W2941199301 cites W2963204406 @default.
- W2941199301 doi "https://doi.org/10.1016/j.neucom.2018.09.102" @default.
- W2941199301 hasPublicationYear "2020" @default.
- W2941199301 type Work @default.
- W2941199301 sameAs 2941199301 @default.
- W2941199301 citedByCount "48" @default.
- W2941199301 countsByYear W29411993012020 @default.
- W2941199301 countsByYear W29411993012021 @default.
- W2941199301 countsByYear W29411993012022 @default.
- W2941199301 countsByYear W29411993012023 @default.
- W2941199301 crossrefType "journal-article" @default.
- W2941199301 hasAuthorship W2941199301A5028123850 @default.
- W2941199301 hasAuthorship W2941199301A5084367490 @default.
- W2941199301 hasConcept C108583219 @default.
- W2941199301 hasConcept C111919701 @default.
- W2941199301 hasConcept C119857082 @default.
- W2941199301 hasConcept C124101348 @default.
- W2941199301 hasConcept C154945302 @default.
- W2941199301 hasConcept C2778579508 @default.
- W2941199301 hasConcept C2989133298 @default.
- W2941199301 hasConcept C41008148 @default.
- W2941199301 hasConcept C48044578 @default.
- W2941199301 hasConcept C50644808 @default.
- W2941199301 hasConcept C52173422 @default.
- W2941199301 hasConcept C541664917 @default.
- W2941199301 hasConcept C557433098 @default.
- W2941199301 hasConceptScore W2941199301C108583219 @default.
- W2941199301 hasConceptScore W2941199301C111919701 @default.
- W2941199301 hasConceptScore W2941199301C119857082 @default.
- W2941199301 hasConceptScore W2941199301C124101348 @default.
- W2941199301 hasConceptScore W2941199301C154945302 @default.
- W2941199301 hasConceptScore W2941199301C2778579508 @default.
- W2941199301 hasConceptScore W2941199301C2989133298 @default.
- W2941199301 hasConceptScore W2941199301C41008148 @default.
- W2941199301 hasConceptScore W2941199301C48044578 @default.
- W2941199301 hasConceptScore W2941199301C50644808 @default.
- W2941199301 hasConceptScore W2941199301C52173422 @default.
- W2941199301 hasConceptScore W2941199301C541664917 @default.
- W2941199301 hasConceptScore W2941199301C557433098 @default.
- W2941199301 hasLocation W29411993011 @default.
- W2941199301 hasOpenAccess W2941199301 @default.
- W2941199301 hasPrimaryLocation W29411993011 @default.
- W2941199301 hasRelatedWork W2028727337 @default.
- W2941199301 hasRelatedWork W2751702350 @default.
- W2941199301 hasRelatedWork W2915981028 @default.
- W2941199301 hasRelatedWork W2951900017 @default.
- W2941199301 hasRelatedWork W2980139868 @default.
- W2941199301 hasRelatedWork W3037037884 @default.
- W2941199301 hasRelatedWork W3110859274 @default.
- W2941199301 hasRelatedWork W3164409774 @default.
- W2941199301 hasRelatedWork W4206406691 @default.
- W2941199301 hasRelatedWork W4220934934 @default.
- W2941199301 hasVolume "396" @default.
- W2941199301 isParatext "false" @default.
- W2941199301 isRetracted "false" @default.
- W2941199301 magId "2941199301" @default.
- W2941199301 workType "article" @default.