Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941283721> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2941283721 abstract "We present a discretely entropy stable discontinuous Galerkin (DG) method for the resistive magneto-hydrodynamic (MHD) equations on three-dimensional curvilinear un- structured hexahedral meshes. Compared to other fluid dynamics systems such as the shallow water equations or the compressible Navier-Stokes equations, the resistive MHD equations need special considerations because of the divergence-free constraint on the magnetic field. For instance, it is well known that for the symmetrization of the ideal MHD system as well as the continuous entropy analysis a non-conservative term propor- tional to the divergence of the magnetic field, typically referred to as the Powell term, must be included. As a consequence, the mimicry of the continuous entropy analysis in the discrete sense demands a suitable DG approximation of the non-conservative terms in addition to the ideal MHD terms.We focus on the resistive MHD equations. Subsequently, our first result is a proof that the resistive terms are symmetric and positive-definite when formulated in entropy space as gradients of the entropy variables. This enables us to show that the entropy inequality holds for the resistive MHD equations. The continuous analysis is the key for our DG discretization and guides the path for the construction of an approximation that discretely mimics the entropy inequality, typically termed entropy stability. The discrete analysis relies on the summation-by-parts (SBP) property, which is satisfied by the DG spectral element method (DGSEM) with Legendre-Gauss-Lobatto (LGL) nodes. With the help of a resulting split form approximation and by incorporating specific dicretiza- tions of the non-conservative terms, we obtain an overall entropy conservative DG scheme for the ideal MHD equations. We extend the scheme to an entropy stable approximation by adding appropriate dissipation terms. Further, we provide a detailed derivation and analysis of the entropy stable discretization on three-dimensional curvilinear meshes.Although the divergence-free constraint is included in the non-conservative terms, the resulting method has no particular treatment to control the magnetic field divergence errors, which pollute the solution quality. Hence, we also extend the standard resistive MHD equations and the according DG approximation with a divergence cleaning mech- anism that is based on a generalized Lagrange multiplier (GLM). Moreover, we equip the resulting scheme with certain shock capturing methods in order to regularize the approximation in oscillatory regions close to discontinuities.We provide numerical examples that verify the theoretical properties of the entropy stable method. Also, we demonstrate the increased robustness of the entropy stable method with a series of challenging numerical results, before we finally apply it to a real space physics model describing atmospheric plasma interactions." @default.
- W2941283721 created "2019-05-03" @default.
- W2941283721 creator A5011420971 @default.
- W2941283721 date "2019-03-14" @default.
- W2941283721 modified "2023-09-27" @default.
- W2941283721 title "An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations" @default.
- W2941283721 hasPublicationYear "2019" @default.
- W2941283721 type Work @default.
- W2941283721 sameAs 2941283721 @default.
- W2941283721 citedByCount "5" @default.
- W2941283721 countsByYear W29412837212019 @default.
- W2941283721 countsByYear W29412837212020 @default.
- W2941283721 countsByYear W29412837212021 @default.
- W2941283721 crossrefType "dissertation" @default.
- W2941283721 hasAuthorship W2941283721A5011420971 @default.
- W2941283721 hasConcept C106301342 @default.
- W2941283721 hasConcept C115260700 @default.
- W2941283721 hasConcept C121332964 @default.
- W2941283721 hasConcept C134306372 @default.
- W2941283721 hasConcept C135628077 @default.
- W2941283721 hasConcept C28826006 @default.
- W2941283721 hasConcept C31532427 @default.
- W2941283721 hasConcept C33923547 @default.
- W2941283721 hasConcept C62520636 @default.
- W2941283721 hasConcept C73000952 @default.
- W2941283721 hasConcept C92244383 @default.
- W2941283721 hasConcept C97355855 @default.
- W2941283721 hasConceptScore W2941283721C106301342 @default.
- W2941283721 hasConceptScore W2941283721C115260700 @default.
- W2941283721 hasConceptScore W2941283721C121332964 @default.
- W2941283721 hasConceptScore W2941283721C134306372 @default.
- W2941283721 hasConceptScore W2941283721C135628077 @default.
- W2941283721 hasConceptScore W2941283721C28826006 @default.
- W2941283721 hasConceptScore W2941283721C31532427 @default.
- W2941283721 hasConceptScore W2941283721C33923547 @default.
- W2941283721 hasConceptScore W2941283721C62520636 @default.
- W2941283721 hasConceptScore W2941283721C73000952 @default.
- W2941283721 hasConceptScore W2941283721C92244383 @default.
- W2941283721 hasConceptScore W2941283721C97355855 @default.
- W2941283721 hasLocation W29412837211 @default.
- W2941283721 hasOpenAccess W2941283721 @default.
- W2941283721 hasPrimaryLocation W29412837211 @default.
- W2941283721 hasRelatedWork W1512375327 @default.
- W2941283721 hasRelatedWork W1972924431 @default.
- W2941283721 hasRelatedWork W1980089387 @default.
- W2941283721 hasRelatedWork W2549776055 @default.
- W2941283721 hasRelatedWork W2767208509 @default.
- W2941283721 hasRelatedWork W2804813536 @default.
- W2941283721 hasRelatedWork W2894158632 @default.
- W2941283721 hasRelatedWork W2949414414 @default.
- W2941283721 hasRelatedWork W2951592231 @default.
- W2941283721 hasRelatedWork W2963179762 @default.
- W2941283721 hasRelatedWork W3010224402 @default.
- W2941283721 hasRelatedWork W3013974629 @default.
- W2941283721 hasRelatedWork W3040091001 @default.
- W2941283721 hasRelatedWork W3044018165 @default.
- W2941283721 hasRelatedWork W3099299467 @default.
- W2941283721 hasRelatedWork W3100433769 @default.
- W2941283721 hasRelatedWork W3102806793 @default.
- W2941283721 hasRelatedWork W3182249557 @default.
- W2941283721 hasRelatedWork W3183178141 @default.
- W2941283721 hasRelatedWork W3206676988 @default.
- W2941283721 isParatext "false" @default.
- W2941283721 isRetracted "false" @default.
- W2941283721 magId "2941283721" @default.
- W2941283721 workType "dissertation" @default.