Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941298512> ?p ?o ?g. }
- W2941298512 endingPage "347" @default.
- W2941298512 startingPage "334" @default.
- W2941298512 abstract "Aligning different views or representations of anatomy is an essential task in both medical imaging computing (MIC) and computer-assisted interventions' (CAIs') communities. Motivated by simultaneously registering multiple point sets (PSs) and further improving the algorithm's robustness to outliers and noise, in this paper, we propose a novel probabilistic approach to jointly register multiple generalized PSs. A generalized PS includes high-dimensional points consisting of both positional vectors and orientational information (or normal vectors). Hybrid mixture models (HMMs) combining Gaussian and von Mises-Fisher (VMF) distributions are used to model positional and orientational components of the generalized PSs. All generalized PSs are jointly registered using the expectation-maximization (EM) technique. In the E-step, the posterior probabilities representing point correspondence confidences are computed. In the M-step, the rigid transformation matrices, positional variances, and orientational concentration parameters are updated for each generalized PS. E and M steps will iterate until some termination condition is satisfied. We validate our algorithm using the surface points extracted from the human femur CT model. The experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art ones in terms of the accuracy, robustness, as well as convergence speed. In addition, our algorithm is able to recover a better central PS than the state-of-the-art one does in the case of registering multiple PSs. Our algorithm is very suitable for registering complex structures arising in medical imaging. This paper was motivated by solving the problem of registering two or multiple point sets. Most existing approaches generally use only the positional information associated with each point and thus lack robustness to noise and outliers. This paper suggests a new robust method that also adopts the normal vectors associated with each point. The registration problem is cast into a maximum-likelihood (ML) problem and solved under the expectation-maximization (EM) framework. Closed-form solutions to estimating parameters in both expectation and maximization steps are provided in this paper. We have demonstrated through extensive experiments that the proposed registration algorithm achieves improved accuracy, robustness to noise and outliers, and faster convergence speed." @default.
- W2941298512 created "2019-05-03" @default.
- W2941298512 creator A5021531143 @default.
- W2941298512 creator A5040071840 @default.
- W2941298512 creator A5048709541 @default.
- W2941298512 date "2020-01-01" @default.
- W2941298512 modified "2023-10-15" @default.
- W2941298512 title "Joint Rigid Registration of Multiple Generalized Point Sets With Hybrid Mixture Models" @default.
- W2941298512 cites W1219611103 @default.
- W2941298512 cites W1900151113 @default.
- W2941298512 cites W1953793983 @default.
- W2941298512 cites W1966906328 @default.
- W2941298512 cites W1979151801 @default.
- W2941298512 cites W1984905474 @default.
- W2941298512 cites W1988874269 @default.
- W2941298512 cites W1994104838 @default.
- W2941298512 cites W2015901765 @default.
- W2941298512 cites W2027001755 @default.
- W2941298512 cites W2049981393 @default.
- W2941298512 cites W2055611542 @default.
- W2941298512 cites W2056394258 @default.
- W2941298512 cites W2059569291 @default.
- W2941298512 cites W2063549868 @default.
- W2941298512 cites W2065693146 @default.
- W2941298512 cites W2071730188 @default.
- W2941298512 cites W2071992612 @default.
- W2941298512 cites W2074199334 @default.
- W2941298512 cites W2074693620 @default.
- W2941298512 cites W2084461520 @default.
- W2941298512 cites W2086871022 @default.
- W2941298512 cites W2097832352 @default.
- W2941298512 cites W2105413810 @default.
- W2941298512 cites W2108660218 @default.
- W2941298512 cites W2108795408 @default.
- W2941298512 cites W2114354851 @default.
- W2941298512 cites W2114712988 @default.
- W2941298512 cites W2118026950 @default.
- W2941298512 cites W2121538207 @default.
- W2941298512 cites W2124141313 @default.
- W2941298512 cites W2133476816 @default.
- W2941298512 cites W2134236847 @default.
- W2941298512 cites W2142529775 @default.
- W2941298512 cites W2150190641 @default.
- W2941298512 cites W2157630536 @default.
- W2941298512 cites W2157656099 @default.
- W2941298512 cites W2172193928 @default.
- W2941298512 cites W2172953088 @default.
- W2941298512 cites W2176551120 @default.
- W2941298512 cites W2333057548 @default.
- W2941298512 cites W2342833881 @default.
- W2941298512 cites W2519911873 @default.
- W2941298512 cites W2527408187 @default.
- W2941298512 cites W2584885816 @default.
- W2941298512 cites W2594495318 @default.
- W2941298512 cites W2597187707 @default.
- W2941298512 cites W2604257183 @default.
- W2941298512 cites W2654024950 @default.
- W2941298512 cites W2740578684 @default.
- W2941298512 cites W2745964468 @default.
- W2941298512 cites W2773277815 @default.
- W2941298512 cites W2774328584 @default.
- W2941298512 cites W2810468710 @default.
- W2941298512 cites W2889784867 @default.
- W2941298512 cites W2901219313 @default.
- W2941298512 cites W2908684560 @default.
- W2941298512 cites W2968374624 @default.
- W2941298512 cites W327180933 @default.
- W2941298512 cites W4248598408 @default.
- W2941298512 cites W4249866455 @default.
- W2941298512 cites W432289371 @default.
- W2941298512 cites W71088789 @default.
- W2941298512 doi "https://doi.org/10.1109/tase.2019.2906391" @default.
- W2941298512 hasPublicationYear "2020" @default.
- W2941298512 type Work @default.
- W2941298512 sameAs 2941298512 @default.
- W2941298512 citedByCount "27" @default.
- W2941298512 countsByYear W29412985122019 @default.
- W2941298512 countsByYear W29412985122020 @default.
- W2941298512 countsByYear W29412985122021 @default.
- W2941298512 countsByYear W29412985122022 @default.
- W2941298512 countsByYear W29412985122023 @default.
- W2941298512 crossrefType "journal-article" @default.
- W2941298512 hasAuthorship W2941298512A5021531143 @default.
- W2941298512 hasAuthorship W2941298512A5040071840 @default.
- W2941298512 hasAuthorship W2941298512A5048709541 @default.
- W2941298512 hasConcept C104317684 @default.
- W2941298512 hasConcept C105795698 @default.
- W2941298512 hasConcept C107673813 @default.
- W2941298512 hasConcept C11413529 @default.
- W2941298512 hasConcept C121332964 @default.
- W2941298512 hasConcept C126255220 @default.
- W2941298512 hasConcept C126795593 @default.
- W2941298512 hasConcept C153180895 @default.
- W2941298512 hasConcept C154945302 @default.
- W2941298512 hasConcept C163716315 @default.
- W2941298512 hasConcept C182081679 @default.
- W2941298512 hasConcept C185592680 @default.
- W2941298512 hasConcept C200336642 @default.