Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941361946> ?p ?o ?g. }
- W2941361946 endingPage "1020" @default.
- W2941361946 startingPage "932" @default.
- W2941361946 abstract "This paper proves the existence of small-amplitude global-in-time unique mild solutions to both the Landau equation including the Coulomb potential and the Boltzmann equation without angular cutoff. Since the well-known works (Guo, 2002) and (Gressman-Strain-2011, AMUXY-2012) on the construction of classical solutions in smooth Sobolev spaces which in particular are regular in the spatial variables, it still remains an open problem to obtain global solutions in an $L^infty_{x,v}$ framework, similar to that in (Guo-2010), for the Boltzmann equation with cutoff in general bounded domains. One main difficulty arises from the interaction between the transport operator and the velocity-diffusion-type collision operator in the non-cutoff Boltzmann and Landau equations; another major difficulty is the potential formation of singularities for solutions to the boundary value problem. In the present work we introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus, or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the $L^infty_T L^2_v$ norm, in velocity and time, of the distribution function is in the Wiener algebra $A(Omega)$ in the spatial variables. Besides the construction of global solutions in these function spaces, we additionally study the large-time behavior of solutions for both hard and soft potentials, and we further justify the property of propagation of regularity of solutions in the spatial variables." @default.
- W2941361946 created "2019-05-03" @default.
- W2941361946 creator A5034920062 @default.
- W2941361946 creator A5059859467 @default.
- W2941361946 creator A5067858037 @default.
- W2941361946 creator A5073850048 @default.
- W2941361946 date "2020-06-12" @default.
- W2941361946 modified "2023-10-13" @default.
- W2941361946 title "Global Mild Solutions of the Landau and <scp>Non‐Cutoff</scp> Boltzmann Equations" @default.
- W2941361946 cites W148325819 @default.
- W2941361946 cites W1507939396 @default.
- W2941361946 cites W1645527346 @default.
- W2941361946 cites W1649261177 @default.
- W2941361946 cites W165153693 @default.
- W2941361946 cites W1780201395 @default.
- W2941361946 cites W1898928021 @default.
- W2941361946 cites W1913957549 @default.
- W2941361946 cites W1925947257 @default.
- W2941361946 cites W1966756553 @default.
- W2941361946 cites W1966956543 @default.
- W2941361946 cites W1970018499 @default.
- W2941361946 cites W1975096251 @default.
- W2941361946 cites W1981352579 @default.
- W2941361946 cites W1985892273 @default.
- W2941361946 cites W1985898993 @default.
- W2941361946 cites W1986562502 @default.
- W2941361946 cites W1989205527 @default.
- W2941361946 cites W1991491657 @default.
- W2941361946 cites W1998283523 @default.
- W2941361946 cites W2007196946 @default.
- W2941361946 cites W2019579692 @default.
- W2941361946 cites W2023023275 @default.
- W2941361946 cites W2036881335 @default.
- W2941361946 cites W2038519360 @default.
- W2941361946 cites W2039481916 @default.
- W2941361946 cites W2040663681 @default.
- W2941361946 cites W2040945051 @default.
- W2941361946 cites W2045379334 @default.
- W2941361946 cites W2055066459 @default.
- W2941361946 cites W2055099692 @default.
- W2941361946 cites W2056518217 @default.
- W2941361946 cites W2063541189 @default.
- W2941361946 cites W2065357833 @default.
- W2941361946 cites W2082654967 @default.
- W2941361946 cites W2093321557 @default.
- W2941361946 cites W2094528868 @default.
- W2941361946 cites W2095069656 @default.
- W2941361946 cites W2119655313 @default.
- W2941361946 cites W2148744212 @default.
- W2941361946 cites W2150550863 @default.
- W2941361946 cites W2167967599 @default.
- W2941361946 cites W2222540311 @default.
- W2941361946 cites W2297183116 @default.
- W2941361946 cites W230142061 @default.
- W2941361946 cites W2329895630 @default.
- W2941361946 cites W2331417883 @default.
- W2941361946 cites W2337370313 @default.
- W2941361946 cites W2621284833 @default.
- W2941361946 cites W2743544228 @default.
- W2941361946 cites W2766537724 @default.
- W2941361946 cites W28106125 @default.
- W2941361946 cites W2962890253 @default.
- W2941361946 cites W2963101821 @default.
- W2941361946 cites W2963158010 @default.
- W2941361946 cites W2963758492 @default.
- W2941361946 cites W2963822970 @default.
- W2941361946 cites W2963914308 @default.
- W2941361946 cites W2972720256 @default.
- W2941361946 cites W2986966993 @default.
- W2941361946 cites W3098358263 @default.
- W2941361946 cites W3099067492 @default.
- W2941361946 cites W3099153579 @default.
- W2941361946 cites W3101052620 @default.
- W2941361946 cites W3101423708 @default.
- W2941361946 cites W3101845240 @default.
- W2941361946 cites W3103301222 @default.
- W2941361946 cites W3104041939 @default.
- W2941361946 cites W3104469468 @default.
- W2941361946 cites W3105827688 @default.
- W2941361946 cites W4241362023 @default.
- W2941361946 cites W2762647011 @default.
- W2941361946 doi "https://doi.org/10.1002/cpa.21920" @default.
- W2941361946 hasPublicationYear "2020" @default.
- W2941361946 type Work @default.
- W2941361946 sameAs 2941361946 @default.
- W2941361946 citedByCount "32" @default.
- W2941361946 countsByYear W29413619462019 @default.
- W2941361946 countsByYear W29413619462020 @default.
- W2941361946 countsByYear W29413619462021 @default.
- W2941361946 countsByYear W29413619462022 @default.
- W2941361946 countsByYear W29413619462023 @default.
- W2941361946 crossrefType "journal-article" @default.
- W2941361946 hasAuthorship W2941361946A5034920062 @default.
- W2941361946 hasAuthorship W2941361946A5059859467 @default.
- W2941361946 hasAuthorship W2941361946A5067858037 @default.
- W2941361946 hasAuthorship W2941361946A5073850048 @default.
- W2941361946 hasBestOaLocation W29413619462 @default.
- W2941361946 hasConcept C121332964 @default.