Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941381621> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2941381621 abstract "Two-stage stochastic optimization is a widely used framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we make first-stage decisions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A common criticism levied at this model is that the underlying probability distribution is itself often imprecise! To address this, an approach that is quite versatile and has gained popularity in the stochastic-optimization literature is the distributionally robust 2-stage model: given a collection D of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in D. We provide a framework for designing approximation algorithms in such settings when the collection D is a ball around a central distribution and the central distribution is accessed only via a sampling black box. We first show that one can utilize the sample average approximation (SAA) method—solve the distributionally robust problem with an empirical estimate of the central distribution—to reduce the problem to the case where the central distribution has polynomial-size support. Complementing this, we show how to approximately solve a fractional relaxation of the SAA (i.e., polynomial-scenario central-distribution) problem. Unlike in 2-stage stochastic- or robust- optimization, this turns out to be quite challenging. We utilize the ellipsoid method in conjunction with several new ideas to show that this problem can be approximately solved provided that we have an (approximation) algorithm for a certain max-min problem that is akin to, and generalizes, the k-max-min problem—find the worst-case scenario consisting of at most k elements—encountered in 2-stage robust optimization. We obtain such a procedure for various discrete-optimization problems; by complementing this via LP-rounding algorithms that provide local (i.e., per-scenario) approximation guarantees, we obtain the first approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within O(1)-factors of the guarantees known for the deterministic version of the problem." @default.
- W2941381621 created "2019-05-03" @default.
- W2941381621 creator A5007379194 @default.
- W2941381621 creator A5031968426 @default.
- W2941381621 date "2019-06-23" @default.
- W2941381621 modified "2023-09-24" @default.
- W2941381621 title "Approximation algorithms for distributionally-robust stochastic optimization with black-box distributions" @default.
- W2941381621 cites W1484951415 @default.
- W2941381621 cites W1526404960 @default.
- W2941381621 cites W1604332079 @default.
- W2941381621 cites W1968355947 @default.
- W2941381621 cites W1981673685 @default.
- W2941381621 cites W1982280823 @default.
- W2941381621 cites W1983916623 @default.
- W2941381621 cites W1987141758 @default.
- W2941381621 cites W1993599556 @default.
- W2941381621 cites W2039251573 @default.
- W2941381621 cites W2043459466 @default.
- W2941381621 cites W2057974767 @default.
- W2941381621 cites W2076746184 @default.
- W2941381621 cites W2076901012 @default.
- W2941381621 cites W2105088727 @default.
- W2941381621 cites W2122109562 @default.
- W2941381621 cites W2130186256 @default.
- W2941381621 cites W2134396776 @default.
- W2941381621 cites W2177090493 @default.
- W2941381621 cites W2485530614 @default.
- W2941381621 cites W2526036069 @default.
- W2941381621 doi "https://doi.org/10.1145/3313276.3316391" @default.
- W2941381621 hasPublicationYear "2019" @default.
- W2941381621 type Work @default.
- W2941381621 sameAs 2941381621 @default.
- W2941381621 citedByCount "6" @default.
- W2941381621 countsByYear W29413816212018 @default.
- W2941381621 countsByYear W29413816212019 @default.
- W2941381621 countsByYear W29413816212020 @default.
- W2941381621 countsByYear W29413816212021 @default.
- W2941381621 crossrefType "proceedings-article" @default.
- W2941381621 hasAuthorship W2941381621A5007379194 @default.
- W2941381621 hasAuthorship W2941381621A5031968426 @default.
- W2941381621 hasBestOaLocation W29413816212 @default.
- W2941381621 hasConcept C11413529 @default.
- W2941381621 hasConcept C126255220 @default.
- W2941381621 hasConcept C148764684 @default.
- W2941381621 hasConcept C154945302 @default.
- W2941381621 hasConcept C193254401 @default.
- W2941381621 hasConcept C194387892 @default.
- W2941381621 hasConcept C2987595161 @default.
- W2941381621 hasConcept C33923547 @default.
- W2941381621 hasConcept C41008148 @default.
- W2941381621 hasConcept C94966114 @default.
- W2941381621 hasConceptScore W2941381621C11413529 @default.
- W2941381621 hasConceptScore W2941381621C126255220 @default.
- W2941381621 hasConceptScore W2941381621C148764684 @default.
- W2941381621 hasConceptScore W2941381621C154945302 @default.
- W2941381621 hasConceptScore W2941381621C193254401 @default.
- W2941381621 hasConceptScore W2941381621C194387892 @default.
- W2941381621 hasConceptScore W2941381621C2987595161 @default.
- W2941381621 hasConceptScore W2941381621C33923547 @default.
- W2941381621 hasConceptScore W2941381621C41008148 @default.
- W2941381621 hasConceptScore W2941381621C94966114 @default.
- W2941381621 hasFunder F4320334593 @default.
- W2941381621 hasLocation W29413816211 @default.
- W2941381621 hasLocation W29413816212 @default.
- W2941381621 hasOpenAccess W2941381621 @default.
- W2941381621 hasPrimaryLocation W29413816211 @default.
- W2941381621 hasRelatedWork W193468460 @default.
- W2941381621 hasRelatedWork W1977145549 @default.
- W2941381621 hasRelatedWork W2014375465 @default.
- W2941381621 hasRelatedWork W2216231335 @default.
- W2941381621 hasRelatedWork W2903655230 @default.
- W2941381621 hasRelatedWork W3017736765 @default.
- W2941381621 hasRelatedWork W3149055374 @default.
- W2941381621 hasRelatedWork W4210800239 @default.
- W2941381621 hasRelatedWork W4221142098 @default.
- W2941381621 hasRelatedWork W4293570283 @default.
- W2941381621 isParatext "false" @default.
- W2941381621 isRetracted "false" @default.
- W2941381621 magId "2941381621" @default.
- W2941381621 workType "article" @default.