Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941508423> ?p ?o ?g. }
- W2941508423 endingPage "17269" @default.
- W2941508423 startingPage "17256" @default.
- W2941508423 abstract "Due to the synergic feature of individual components in hybrid (nano)biomaterials, their application in regenerative medicine has drawn significant attention. Aiming to address all the current challenges of aerogel as a potent scaffold in bone tissue engineering application, we adopted a novel synthesis approach to synergistically improve the pore size regime and mechanical strength in the aerogel. The three-dimensional aerogel scaffold in this study has been synthesized through a versatile one-pot aqueous-based sol-gel hybridization/assembly of organosilane (tetraethyl orthosilicate) and silk fibroin (SF) biopolymer, followed by unidirectional freeze-casting of the as-prepared hybrid gel and supercritical drying. The developed ultralight silica-SF aerogel hybrids demonstrated a hierarchically organized porous structure with interesting honeycomb-shaped micromorphology and microstructural alignment (anisotropy) in varied length scales. The average macropore size of the hybrid aerogel lied in ∼0.5-18 μm and was systematically controlled with freeze-casting conditions. Together with high porosity (91-94%), high Young's modulus (∼4-7 MPa, >3 order of magnitude improvement compared to their pristine aerogel counterparts), and bone-type anisotropy in the mechanical compressive behavior, the silica-SF hybrid aerogel of this study acted as a very competent scaffold for bone tissue formation. The results of in vitro assessments revealed that the silica-SF aerogel is not only cytocompatible and nonhemolytic but also acted as an open porous microenvironment to trigger osteoblast cell attachment, growth, and proliferation on its surface within 14 days of incubation. Moreover, to support the in vitro results, in vivo bone formation within the aerogel implant in the bone defect site was studied. The X-ray radiology and microcomputed tomography analyses confirmed that a significant new bone tissue density formed in the defect site within 25 days of implantation. Also, in vivo toxicology studies showed a zero-toxic impact of the aerogel implant on the blood biochemical and hematological parameters. Finally, the study clearly shows the potential of aerogel as a bioactive and osteoconductive open porous cellular matrix for a successful osseointegration process." @default.
- W2941508423 created "2019-05-03" @default.
- W2941508423 creator A5002349377 @default.
- W2941508423 creator A5002959091 @default.
- W2941508423 creator A5018681266 @default.
- W2941508423 creator A5025422876 @default.
- W2941508423 creator A5033083512 @default.
- W2941508423 creator A5041205664 @default.
- W2941508423 creator A5044424173 @default.
- W2941508423 creator A5056546842 @default.
- W2941508423 creator A5057830141 @default.
- W2941508423 creator A5071726948 @default.
- W2941508423 creator A5083958762 @default.
- W2941508423 date "2019-04-23" @default.
- W2941508423 modified "2023-10-03" @default.
- W2941508423 title "Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration" @default.
- W2941508423 cites W1514165635 @default.
- W2941508423 cites W1578871797 @default.
- W2941508423 cites W1710815560 @default.
- W2941508423 cites W1915689058 @default.
- W2941508423 cites W1969154472 @default.
- W2941508423 cites W1976429430 @default.
- W2941508423 cites W1981190054 @default.
- W2941508423 cites W1984684349 @default.
- W2941508423 cites W1984685797 @default.
- W2941508423 cites W1989978553 @default.
- W2941508423 cites W1993700548 @default.
- W2941508423 cites W2001598081 @default.
- W2941508423 cites W2003428891 @default.
- W2941508423 cites W2022733137 @default.
- W2941508423 cites W2024076629 @default.
- W2941508423 cites W2028509138 @default.
- W2941508423 cites W2042401965 @default.
- W2941508423 cites W2054080001 @default.
- W2941508423 cites W2060077653 @default.
- W2941508423 cites W2061761744 @default.
- W2941508423 cites W2093998120 @default.
- W2941508423 cites W2095322253 @default.
- W2941508423 cites W2103375541 @default.
- W2941508423 cites W2116408175 @default.
- W2941508423 cites W2117715590 @default.
- W2941508423 cites W2151046161 @default.
- W2941508423 cites W2156525630 @default.
- W2941508423 cites W2159210886 @default.
- W2941508423 cites W2169220536 @default.
- W2941508423 cites W2171612850 @default.
- W2941508423 cites W2191751320 @default.
- W2941508423 cites W2246878422 @default.
- W2941508423 cites W2265709183 @default.
- W2941508423 cites W2314154732 @default.
- W2941508423 cites W2318670600 @default.
- W2941508423 cites W2343770976 @default.
- W2941508423 cites W2414545839 @default.
- W2941508423 cites W2497344522 @default.
- W2941508423 cites W2548592003 @default.
- W2941508423 cites W2584620027 @default.
- W2941508423 cites W2590168351 @default.
- W2941508423 cites W2610723069 @default.
- W2941508423 cites W2612445546 @default.
- W2941508423 cites W2615700955 @default.
- W2941508423 cites W2624988859 @default.
- W2941508423 cites W26610152 @default.
- W2941508423 cites W2761370985 @default.
- W2941508423 cites W2793893149 @default.
- W2941508423 cites W2806209266 @default.
- W2941508423 cites W2808174713 @default.
- W2941508423 cites W2893267824 @default.
- W2941508423 cites W2918613657 @default.
- W2941508423 cites W988112112 @default.
- W2941508423 doi "https://doi.org/10.1021/acsami.9b04283" @default.
- W2941508423 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31013056" @default.
- W2941508423 hasPublicationYear "2019" @default.
- W2941508423 type Work @default.
- W2941508423 sameAs 2941508423 @default.
- W2941508423 citedByCount "101" @default.
- W2941508423 countsByYear W29415084232019 @default.
- W2941508423 countsByYear W29415084232020 @default.
- W2941508423 countsByYear W29415084232021 @default.
- W2941508423 countsByYear W29415084232022 @default.
- W2941508423 countsByYear W29415084232023 @default.
- W2941508423 crossrefType "journal-article" @default.
- W2941508423 hasAuthorship W2941508423A5002349377 @default.
- W2941508423 hasAuthorship W2941508423A5002959091 @default.
- W2941508423 hasAuthorship W2941508423A5018681266 @default.
- W2941508423 hasAuthorship W2941508423A5025422876 @default.
- W2941508423 hasAuthorship W2941508423A5033083512 @default.
- W2941508423 hasAuthorship W2941508423A5041205664 @default.
- W2941508423 hasAuthorship W2941508423A5044424173 @default.
- W2941508423 hasAuthorship W2941508423A5056546842 @default.
- W2941508423 hasAuthorship W2941508423A5057830141 @default.
- W2941508423 hasAuthorship W2941508423A5071726948 @default.
- W2941508423 hasAuthorship W2941508423A5083958762 @default.
- W2941508423 hasBestOaLocation W29415084232 @default.
- W2941508423 hasConcept C122302759 @default.
- W2941508423 hasConcept C127413603 @default.
- W2941508423 hasConcept C136229726 @default.
- W2941508423 hasConcept C159985019 @default.
- W2941508423 hasConcept C192562407 @default.