Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941515438> ?p ?o ?g. }
- W2941515438 endingPage "1167" @default.
- W2941515438 startingPage "1156" @default.
- W2941515438 abstract "Abstract The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non‐Gaussian. In this paper, we introduce a copula‐based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions." @default.
- W2941515438 created "2019-05-03" @default.
- W2941515438 creator A5004473702 @default.
- W2941515438 creator A5020844912 @default.
- W2941515438 creator A5025517633 @default.
- W2941515438 creator A5090118631 @default.
- W2941515438 date "2019-06-17" @default.
- W2941515438 modified "2023-10-14" @default.
- W2941515438 title "Copula‐based semiparametric models for spatiotemporal data" @default.
- W2941515438 cites W1532001286 @default.
- W2941515438 cites W1636828051 @default.
- W2941515438 cites W1870081366 @default.
- W2941515438 cites W1960265583 @default.
- W2941515438 cites W1964166103 @default.
- W2941515438 cites W1984925443 @default.
- W2941515438 cites W1989770508 @default.
- W2941515438 cites W2014059759 @default.
- W2941515438 cites W2016183155 @default.
- W2941515438 cites W2028141904 @default.
- W2941515438 cites W2031504445 @default.
- W2941515438 cites W2040898950 @default.
- W2941515438 cites W2041440829 @default.
- W2941515438 cites W2045600648 @default.
- W2941515438 cites W2048513469 @default.
- W2941515438 cites W2078237481 @default.
- W2941515438 cites W2086284119 @default.
- W2941515438 cites W2109264950 @default.
- W2941515438 cites W2123248178 @default.
- W2941515438 cites W2130310001 @default.
- W2941515438 cites W2142323446 @default.
- W2941515438 cites W2169308707 @default.
- W2941515438 cites W2213174481 @default.
- W2941515438 cites W2260706538 @default.
- W2941515438 cites W2464727076 @default.
- W2941515438 cites W2470916415 @default.
- W2941515438 cites W2523537306 @default.
- W2941515438 cites W2531564859 @default.
- W2941515438 cites W2534227598 @default.
- W2941515438 cites W2584759378 @default.
- W2941515438 cites W2604169908 @default.
- W2941515438 cites W2606716674 @default.
- W2941515438 cites W2763905213 @default.
- W2941515438 cites W2804760238 @default.
- W2941515438 cites W2950446745 @default.
- W2941515438 cites W3123139161 @default.
- W2941515438 cites W4300705184 @default.
- W2941515438 doi "https://doi.org/10.1111/biom.13066" @default.
- W2941515438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31009058" @default.
- W2941515438 hasPublicationYear "2019" @default.
- W2941515438 type Work @default.
- W2941515438 sameAs 2941515438 @default.
- W2941515438 citedByCount "5" @default.
- W2941515438 countsByYear W29415154382018 @default.
- W2941515438 countsByYear W29415154382020 @default.
- W2941515438 countsByYear W29415154382021 @default.
- W2941515438 countsByYear W29415154382023 @default.
- W2941515438 crossrefType "journal-article" @default.
- W2941515438 hasAuthorship W2941515438A5004473702 @default.
- W2941515438 hasAuthorship W2941515438A5020844912 @default.
- W2941515438 hasAuthorship W2941515438A5025517633 @default.
- W2941515438 hasAuthorship W2941515438A5090118631 @default.
- W2941515438 hasBestOaLocation W29415154382 @default.
- W2941515438 hasConcept C105795698 @default.
- W2941515438 hasConcept C111030470 @default.
- W2941515438 hasConcept C117251300 @default.
- W2941515438 hasConcept C118671147 @default.
- W2941515438 hasConcept C121332964 @default.
- W2941515438 hasConcept C122123141 @default.
- W2941515438 hasConcept C149782125 @default.
- W2941515438 hasConcept C154945302 @default.
- W2941515438 hasConcept C163716315 @default.
- W2941515438 hasConcept C165216359 @default.
- W2941515438 hasConcept C17618745 @default.
- W2941515438 hasConcept C185429906 @default.
- W2941515438 hasConcept C18653775 @default.
- W2941515438 hasConcept C33923547 @default.
- W2941515438 hasConcept C41008148 @default.
- W2941515438 hasConcept C43555835 @default.
- W2941515438 hasConcept C62520636 @default.
- W2941515438 hasConcept C78297888 @default.
- W2941515438 hasConceptScore W2941515438C105795698 @default.
- W2941515438 hasConceptScore W2941515438C111030470 @default.
- W2941515438 hasConceptScore W2941515438C117251300 @default.
- W2941515438 hasConceptScore W2941515438C118671147 @default.
- W2941515438 hasConceptScore W2941515438C121332964 @default.
- W2941515438 hasConceptScore W2941515438C122123141 @default.
- W2941515438 hasConceptScore W2941515438C149782125 @default.
- W2941515438 hasConceptScore W2941515438C154945302 @default.
- W2941515438 hasConceptScore W2941515438C163716315 @default.
- W2941515438 hasConceptScore W2941515438C165216359 @default.
- W2941515438 hasConceptScore W2941515438C17618745 @default.
- W2941515438 hasConceptScore W2941515438C185429906 @default.
- W2941515438 hasConceptScore W2941515438C18653775 @default.
- W2941515438 hasConceptScore W2941515438C33923547 @default.
- W2941515438 hasConceptScore W2941515438C41008148 @default.
- W2941515438 hasConceptScore W2941515438C43555835 @default.
- W2941515438 hasConceptScore W2941515438C62520636 @default.
- W2941515438 hasConceptScore W2941515438C78297888 @default.