Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941631569> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2941631569 endingPage "43" @default.
- W2941631569 startingPage "42" @default.
- W2941631569 abstract "More than a hundred countries implement freedom of information laws. In the UK, the Freedom of Information Act 2000 [1] (FOIA) states that the government's documents must be made freely available, or opened , to the public. Moreover, all central UK government departments' documents that have a historic value must be transferred to the The National Archives (TNA) within twenty years of the document's creation. However, government documents can contain sensitive information, such as personal information or information that would likely damage international relations if it was opened. Therefore, all government documents that are to be publicly archived must be sensitivity reviewed to identify and redact the sensitive information. However, the lack of structure in digital document collections and the volume of digital documents that are to be sensitivity reviewed mean that the traditional manual sensitivity review process is not practical for digital sensitivity review. In this thesis, we argue that sensitivity classification can be deployed to assist government departments and human reviewers to sensitivity review born-digital government documents. However, classifying sensitive information is a complex task, since sensitivity is context-dependent and can require a human to judge on the likely effect of releasing the information into the public domain. Moreover, sensitivity is not necessarily topic-oriented, i.e., it is usually dependent on a combination of what is being said and about whom. Through a thorough empirical evaluation, we show that a text classification approach is effective for sensitivity classification and can be improved by identifying the vocabulary, syntactic and semantic document features that are reliable indicators of sensitive or nonsensitive text [2]. Furthermore, we propose to reduce the number of documents that have to be reviewed to learn an effective sensitivity classifier through an active learning strategy in which a sensitivity reviewer redacts any sensitive text in a document as they review it, to construct a representation of the sensitivities in a collection [3]. With this in mind, we propose a novel framework for technology-assisted sensitivity review that can prioritise the most appropriate documents to be reviewed at specific stages of the sensitivity review process. Furthermore, our framework can provide the reviewers with useful information to assist them in making their reviewing decisions. We conduct two user studies to evaluate the effectiveness of our proposed framework for assisting with two distinct digital sensitivity review scenarios, or user models. Firstly, in the limited review user model, which addresses a scenario in which there are insufficient reviewing resources available to sensitivity review all of the documents in a collection, we show that our proposed framework can increase the number of documents that can be reviewed and released to the public with the available reviewing resources [4]. Secondly, in the exhaustive review user model, which addresses a scenario in which all of the documents in a collection will be manually sensitivity reviewed, we show that providing the reviewers with useful information about the documents that contain sensitive information can increase the reviewers' accuracy, reviewing speed and agreement [5]. This is the first thesis to investigate automatically classifying FOIA sensitive information to assist digital sensitivity review. The central contributions are our proposed framework for technology-assisted sensitivity review and our sensitivity classification approaches. Our contributions are validated using a collection of government documents that are sensitivity reviewed by expert sensitivity reviewers to identify two FOIA sensitivities, namely international relations and personal information. Our results demonstrate that our proposed framework is a viable technology for assisting digital sensitivity review. Supervisors Prof. Iadh Ounis (University of Glasgow), Dr. Craig Macdonald (University of Glasgow) Available from: http://theses.gla.ac.uk/41076" @default.
- W2941631569 created "2019-05-03" @default.
- W2941631569 creator A5063436649 @default.
- W2941631569 date "2019-06-01" @default.
- W2941631569 modified "2023-09-27" @default.
- W2941631569 title "A framework for technology-assisted sensitivity review" @default.
- W2941631569 cites W2588301606 @default.
- W2941631569 cites W2791504463 @default.
- W2941631569 cites W2908942717 @default.
- W2941631569 cites W3025330860 @default.
- W2941631569 doi "https://doi.org/10.1145/3458537.3458544" @default.
- W2941631569 hasPublicationYear "2019" @default.
- W2941631569 type Work @default.
- W2941631569 sameAs 2941631569 @default.
- W2941631569 citedByCount "3" @default.
- W2941631569 countsByYear W29416315692020 @default.
- W2941631569 countsByYear W29416315692021 @default.
- W2941631569 countsByYear W29416315692022 @default.
- W2941631569 crossrefType "journal-article" @default.
- W2941631569 hasAuthorship W2941631569A5063436649 @default.
- W2941631569 hasConcept C127413603 @default.
- W2941631569 hasConcept C134306372 @default.
- W2941631569 hasConcept C137822555 @default.
- W2941631569 hasConcept C138885662 @default.
- W2941631569 hasConcept C151730666 @default.
- W2941631569 hasConcept C162324750 @default.
- W2941631569 hasConcept C17744445 @default.
- W2941631569 hasConcept C187736073 @default.
- W2941631569 hasConcept C199539241 @default.
- W2941631569 hasConcept C21200559 @default.
- W2941631569 hasConcept C23123220 @default.
- W2941631569 hasConcept C24326235 @default.
- W2941631569 hasConcept C2522767166 @default.
- W2941631569 hasConcept C27206212 @default.
- W2941631569 hasConcept C2775833480 @default.
- W2941631569 hasConcept C2777601683 @default.
- W2941631569 hasConcept C2778137410 @default.
- W2941631569 hasConcept C2779343474 @default.
- W2941631569 hasConcept C2780451532 @default.
- W2941631569 hasConcept C33923547 @default.
- W2941631569 hasConcept C36503486 @default.
- W2941631569 hasConcept C38652104 @default.
- W2941631569 hasConcept C41008148 @default.
- W2941631569 hasConcept C41895202 @default.
- W2941631569 hasConcept C512654426 @default.
- W2941631569 hasConcept C86803240 @default.
- W2941631569 hasConceptScore W2941631569C127413603 @default.
- W2941631569 hasConceptScore W2941631569C134306372 @default.
- W2941631569 hasConceptScore W2941631569C137822555 @default.
- W2941631569 hasConceptScore W2941631569C138885662 @default.
- W2941631569 hasConceptScore W2941631569C151730666 @default.
- W2941631569 hasConceptScore W2941631569C162324750 @default.
- W2941631569 hasConceptScore W2941631569C17744445 @default.
- W2941631569 hasConceptScore W2941631569C187736073 @default.
- W2941631569 hasConceptScore W2941631569C199539241 @default.
- W2941631569 hasConceptScore W2941631569C21200559 @default.
- W2941631569 hasConceptScore W2941631569C23123220 @default.
- W2941631569 hasConceptScore W2941631569C24326235 @default.
- W2941631569 hasConceptScore W2941631569C2522767166 @default.
- W2941631569 hasConceptScore W2941631569C27206212 @default.
- W2941631569 hasConceptScore W2941631569C2775833480 @default.
- W2941631569 hasConceptScore W2941631569C2777601683 @default.
- W2941631569 hasConceptScore W2941631569C2778137410 @default.
- W2941631569 hasConceptScore W2941631569C2779343474 @default.
- W2941631569 hasConceptScore W2941631569C2780451532 @default.
- W2941631569 hasConceptScore W2941631569C33923547 @default.
- W2941631569 hasConceptScore W2941631569C36503486 @default.
- W2941631569 hasConceptScore W2941631569C38652104 @default.
- W2941631569 hasConceptScore W2941631569C41008148 @default.
- W2941631569 hasConceptScore W2941631569C41895202 @default.
- W2941631569 hasConceptScore W2941631569C512654426 @default.
- W2941631569 hasConceptScore W2941631569C86803240 @default.
- W2941631569 hasIssue "1" @default.
- W2941631569 hasLocation W29416315691 @default.
- W2941631569 hasOpenAccess W2941631569 @default.
- W2941631569 hasPrimaryLocation W29416315691 @default.
- W2941631569 hasRelatedWork W109381856 @default.
- W2941631569 hasRelatedWork W1504101963 @default.
- W2941631569 hasRelatedWork W1509467138 @default.
- W2941631569 hasRelatedWork W2096044534 @default.
- W2941631569 hasRelatedWork W2144190808 @default.
- W2941631569 hasRelatedWork W2357241418 @default.
- W2941631569 hasRelatedWork W2366644548 @default.
- W2941631569 hasRelatedWork W2376314740 @default.
- W2941631569 hasRelatedWork W2384888906 @default.
- W2941631569 hasRelatedWork W2941631569 @default.
- W2941631569 hasVolume "53" @default.
- W2941631569 isParatext "false" @default.
- W2941631569 isRetracted "false" @default.
- W2941631569 magId "2941631569" @default.
- W2941631569 workType "article" @default.