Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941736282> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2941736282 endingPage "56795" @default.
- W2941736282 startingPage "56785" @default.
- W2941736282 abstract "Survival analysis, in many areas such as healthcare and finance, mainly studies the probability of time to the event of interest. Among various methods that build survival predictive models, a class of methods combining with machine learning techniques make assumptions about hazard functions, while another class of methods directly exploit complex neural networks to learn the latent representation of hazard functions. For the traditional survival predictive models, the assumption about hazard functions restricts their performance to some extends. Similarly, the advanced survival predictive models built by complex neural networks also suffer from fairly poor interpretation in real applications. To solve these problems, in this paper, a novel survival analysis method named HitBoost is proposed to predict the probability distribution of the first hitting time (FHT). Instead of making any assumptions about the underlying stochastic process, the proposed HitBoost adopts the multi-output gradient boosting decision tree to implicitly capture the connections between the static covariate and the underlying stochastic process. Furthermore, in the process of tree boosting, the relevant statistics can be utilized to effectively measure the feature importance. The results of evaluations and case studies on benchmarks show that, in comparison to the classical methods, the proposed HitBoost is superior in prediction performance and risk discrimination. Therefore, the HitBoost can be utilized as an effective method to build survival predictive models or to find the important factors for cause-specific failure." @default.
- W2941736282 created "2019-05-03" @default.
- W2941736282 creator A5029827598 @default.
- W2941736282 creator A5040530807 @default.
- W2941736282 creator A5041438685 @default.
- W2941736282 date "2019-01-01" @default.
- W2941736282 modified "2023-09-27" @default.
- W2941736282 title "HitBoost: Survival Analysis via a Multi-Output Gradient Boosting Decision Tree Method" @default.
- W2941736282 cites W1678356000 @default.
- W2941736282 cites W1983275696 @default.
- W2941736282 cites W2000703258 @default.
- W2941736282 cites W2005895632 @default.
- W2941736282 cites W2011418498 @default.
- W2941736282 cites W2027910983 @default.
- W2941736282 cites W2038981426 @default.
- W2941736282 cites W2078575863 @default.
- W2941736282 cites W2084139018 @default.
- W2941736282 cites W2110992644 @default.
- W2941736282 cites W2115380778 @default.
- W2941736282 cites W2143481518 @default.
- W2941736282 cites W2190954851 @default.
- W2941736282 cites W2334123193 @default.
- W2941736282 cites W2556247010 @default.
- W2941736282 cites W2753919178 @default.
- W2941736282 cites W2782364997 @default.
- W2941736282 cites W2795411881 @default.
- W2941736282 cites W2891163688 @default.
- W2941736282 cites W2895493709 @default.
- W2941736282 cites W2911964244 @default.
- W2941736282 cites W2922181508 @default.
- W2941736282 cites W3099478002 @default.
- W2941736282 cites W3147894994 @default.
- W2941736282 doi "https://doi.org/10.1109/access.2019.2913428" @default.
- W2941736282 hasPublicationYear "2019" @default.
- W2941736282 type Work @default.
- W2941736282 sameAs 2941736282 @default.
- W2941736282 citedByCount "5" @default.
- W2941736282 countsByYear W29417362822020 @default.
- W2941736282 countsByYear W29417362822022 @default.
- W2941736282 crossrefType "journal-article" @default.
- W2941736282 hasAuthorship W2941736282A5029827598 @default.
- W2941736282 hasAuthorship W2941736282A5040530807 @default.
- W2941736282 hasAuthorship W2941736282A5041438685 @default.
- W2941736282 hasBestOaLocation W29417362821 @default.
- W2941736282 hasConcept C119043178 @default.
- W2941736282 hasConcept C119857082 @default.
- W2941736282 hasConcept C124101348 @default.
- W2941736282 hasConcept C154945302 @default.
- W2941736282 hasConcept C169258074 @default.
- W2941736282 hasConcept C41008148 @default.
- W2941736282 hasConcept C46686674 @default.
- W2941736282 hasConcept C50644808 @default.
- W2941736282 hasConcept C70153297 @default.
- W2941736282 hasConcept C84525736 @default.
- W2941736282 hasConceptScore W2941736282C119043178 @default.
- W2941736282 hasConceptScore W2941736282C119857082 @default.
- W2941736282 hasConceptScore W2941736282C124101348 @default.
- W2941736282 hasConceptScore W2941736282C154945302 @default.
- W2941736282 hasConceptScore W2941736282C169258074 @default.
- W2941736282 hasConceptScore W2941736282C41008148 @default.
- W2941736282 hasConceptScore W2941736282C46686674 @default.
- W2941736282 hasConceptScore W2941736282C50644808 @default.
- W2941736282 hasConceptScore W2941736282C70153297 @default.
- W2941736282 hasConceptScore W2941736282C84525736 @default.
- W2941736282 hasFunder F4320322922 @default.
- W2941736282 hasLocation W29417362821 @default.
- W2941736282 hasLocation W29417362822 @default.
- W2941736282 hasOpenAccess W2941736282 @default.
- W2941736282 hasPrimaryLocation W29417362821 @default.
- W2941736282 hasRelatedWork W2072242069 @default.
- W2941736282 hasRelatedWork W2154991768 @default.
- W2941736282 hasRelatedWork W3100297620 @default.
- W2941736282 hasRelatedWork W3142959196 @default.
- W2941736282 hasRelatedWork W4206556944 @default.
- W2941736282 hasRelatedWork W4212956667 @default.
- W2941736282 hasRelatedWork W4296081764 @default.
- W2941736282 hasRelatedWork W4313488044 @default.
- W2941736282 hasRelatedWork W4320854072 @default.
- W2941736282 hasRelatedWork W4381383350 @default.
- W2941736282 hasVolume "7" @default.
- W2941736282 isParatext "false" @default.
- W2941736282 isRetracted "false" @default.
- W2941736282 magId "2941736282" @default.
- W2941736282 workType "article" @default.