Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941796313> ?p ?o ?g. }
- W2941796313 endingPage "3834" @default.
- W2941796313 startingPage "3815" @default.
- W2941796313 abstract "Abstract We develop and test algorithms for rapidly and consistently analyzing water quality profile data such as temperature and fluorescence that are used to identify lake thermostratification and deep chlorophyll layers (DCL). Currently, the processing of profile data and identification of key features are manual and subjective, and thus, the results are not comparable from one sampling event to another. In this study, we develop a method to approximate vertical temperature profiles with linear segments using a piecewise linear representation algorithm, from which stratification patterns can be extracted. We also propose an automated peak detection algorithm to identify the location and magnitude of DCL. The algorithms are applied to water quality profile data collected by the United States Environmental Protection Agency Great Lakes National Program Office, which conducts annual depth profiling using conductivity, temperature, depth profilers at fixed locations in the Great Lakes. The algorithms generate similar results to human judgments, with some outliers that show expert errors, algorithm limitations, and ambiguities in defining layers. We also show how the algorithms can analyze the shape of temperature and fluorescence profiles to detect unusual patterns. Lake Superior is used as a case study to reveal spatial and temporal trends of the thermocline, DCL, and the heat storage change from spring to summer. The results reveal that more heat was stored in the eastern basin of the lake. The methods proposed here will help take full advantage of historical depth profiling data and benefit future sampling processes by providing a consistent method." @default.
- W2941796313 created "2019-05-03" @default.
- W2941796313 creator A5027111350 @default.
- W2941796313 creator A5043731035 @default.
- W2941796313 creator A5080041337 @default.
- W2941796313 date "2019-05-01" @default.
- W2941796313 modified "2023-10-01" @default.
- W2941796313 title "Algorithmic Characterization of Lake Stratification and Deep Chlorophyll Layers From Depth Profiling Water Quality Data" @default.
- W2941796313 cites W1521538448 @default.
- W2941796313 cites W1589900228 @default.
- W2941796313 cites W1964451367 @default.
- W2941796313 cites W1980961496 @default.
- W2941796313 cites W1982043539 @default.
- W2941796313 cites W1985153381 @default.
- W2941796313 cites W1991132830 @default.
- W2941796313 cites W2006411157 @default.
- W2941796313 cites W2015341110 @default.
- W2941796313 cites W2016000202 @default.
- W2941796313 cites W2028246262 @default.
- W2941796313 cites W2029969213 @default.
- W2941796313 cites W2032180674 @default.
- W2941796313 cites W2032587861 @default.
- W2941796313 cites W2034121157 @default.
- W2941796313 cites W2038720636 @default.
- W2941796313 cites W2043735243 @default.
- W2941796313 cites W2045365231 @default.
- W2941796313 cites W2049790355 @default.
- W2941796313 cites W2054703169 @default.
- W2941796313 cites W2060078850 @default.
- W2941796313 cites W2062384046 @default.
- W2941796313 cites W2067426247 @default.
- W2941796313 cites W2079992261 @default.
- W2941796313 cites W2094378139 @default.
- W2941796313 cites W2101870655 @default.
- W2941796313 cites W2103263253 @default.
- W2941796313 cites W2107937367 @default.
- W2941796313 cites W2117420000 @default.
- W2941796313 cites W2123944661 @default.
- W2941796313 cites W2124723626 @default.
- W2941796313 cites W2144768720 @default.
- W2941796313 cites W2152858797 @default.
- W2941796313 cites W2157441396 @default.
- W2941796313 cites W2161310239 @default.
- W2941796313 cites W2167526974 @default.
- W2941796313 cites W2175490306 @default.
- W2941796313 cites W2226750911 @default.
- W2941796313 cites W2316156031 @default.
- W2941796313 cites W2483430316 @default.
- W2941796313 cites W2490731404 @default.
- W2941796313 cites W2613806462 @default.
- W2941796313 cites W2615122809 @default.
- W2941796313 cites W2789841772 @default.
- W2941796313 cites W4251142193 @default.
- W2941796313 doi "https://doi.org/10.1029/2018wr023975" @default.
- W2941796313 hasPublicationYear "2019" @default.
- W2941796313 type Work @default.
- W2941796313 sameAs 2941796313 @default.
- W2941796313 citedByCount "10" @default.
- W2941796313 countsByYear W29417963132020 @default.
- W2941796313 countsByYear W29417963132021 @default.
- W2941796313 countsByYear W29417963132022 @default.
- W2941796313 countsByYear W29417963132023 @default.
- W2941796313 crossrefType "journal-article" @default.
- W2941796313 hasAuthorship W2941796313A5027111350 @default.
- W2941796313 hasAuthorship W2941796313A5043731035 @default.
- W2941796313 hasAuthorship W2941796313A5080041337 @default.
- W2941796313 hasConcept C100701293 @default.
- W2941796313 hasConcept C105824904 @default.
- W2941796313 hasConcept C111919701 @default.
- W2941796313 hasConcept C11413529 @default.
- W2941796313 hasConcept C124101348 @default.
- W2941796313 hasConcept C127313418 @default.
- W2941796313 hasConcept C127413603 @default.
- W2941796313 hasConcept C140779682 @default.
- W2941796313 hasConcept C154945302 @default.
- W2941796313 hasConcept C176217482 @default.
- W2941796313 hasConcept C187191949 @default.
- W2941796313 hasConcept C192943249 @default.
- W2941796313 hasConcept C21547014 @default.
- W2941796313 hasConcept C24756922 @default.
- W2941796313 hasConcept C3527866 @default.
- W2941796313 hasConcept C39432304 @default.
- W2941796313 hasConcept C41008148 @default.
- W2941796313 hasConcept C49204034 @default.
- W2941796313 hasConcept C59822182 @default.
- W2941796313 hasConcept C62649853 @default.
- W2941796313 hasConcept C76155785 @default.
- W2941796313 hasConcept C79337645 @default.
- W2941796313 hasConcept C86803240 @default.
- W2941796313 hasConcept C88548481 @default.
- W2941796313 hasConcept C94915269 @default.
- W2941796313 hasConceptScore W2941796313C100701293 @default.
- W2941796313 hasConceptScore W2941796313C105824904 @default.
- W2941796313 hasConceptScore W2941796313C111919701 @default.
- W2941796313 hasConceptScore W2941796313C11413529 @default.
- W2941796313 hasConceptScore W2941796313C124101348 @default.
- W2941796313 hasConceptScore W2941796313C127313418 @default.
- W2941796313 hasConceptScore W2941796313C127413603 @default.