Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941861054> ?p ?o ?g. }
- W2941861054 endingPage "493" @default.
- W2941861054 startingPage "475" @default.
- W2941861054 abstract "This paper proposes a decomposition based method in fusion with the non-iterative approach for crude oil price forecasting. In this approach, the robust random vector functional link network (RVFLN), a non-iterative approach in fusion with the most efficient decomposition technique called variational mode decomposition (VMD) is proposed which is executed with two links — fixed assigned random weights and direct link from input to output, and the iterative learning process is not involved in its functioning which makes it faster in execution as compared to many existing techniques proposed for forecasting. The fusion of VMD and robust RVFLN called VMD-RVFLN is implemented for crude oil price forecasting where the crude oil price series is decomposed using VMD into a linear smoother series by extracting useful information and the decomposed modes pass through the robust RVFLN model which produces the final forecasting values. The analysis performed in the study approves its efficiency and reports improvement in forecasting accuracy and execution time as compared to some of the traditional iterative techniques like BPNN (back propagation neural network), ARIMA (auto-regressive integrated moving average), LSSVR (least squares support vector regression), ANFIS (adaptive neuro-fuzzy inference system), IT2FNN (interval type-2 fuzzy neural network) and RNN (recurrent neural network), etc. However, both ELM and RVFLN without modes decomposition fusion exhibit less execution time at the cost of reduction in prediction accuracy." @default.
- W2941861054 created "2019-05-03" @default.
- W2941861054 creator A5025078574 @default.
- W2941861054 creator A5047784763 @default.
- W2941861054 creator A5054611665 @default.
- W2941861054 date "2019-07-01" @default.
- W2941861054 modified "2023-10-06" @default.
- W2941861054 title "Modes decomposition method in fusion with robust random vector functional link network for crude oil price forecasting" @default.
- W2941861054 cites W1938576502 @default.
- W2941861054 cites W1976631583 @default.
- W2941861054 cites W1978266801 @default.
- W2941861054 cites W1983636075 @default.
- W2941861054 cites W1986478348 @default.
- W2941861054 cites W1988845048 @default.
- W2941861054 cites W1991155410 @default.
- W2941861054 cites W1996640396 @default.
- W2941861054 cites W1997522936 @default.
- W2941861054 cites W2000982976 @default.
- W2941861054 cites W2003205626 @default.
- W2941861054 cites W2006354011 @default.
- W2941861054 cites W2018404189 @default.
- W2941861054 cites W2019037940 @default.
- W2941861054 cites W2021606320 @default.
- W2941861054 cites W2024359316 @default.
- W2941861054 cites W2025291942 @default.
- W2941861054 cites W2028068740 @default.
- W2941861054 cites W2028290323 @default.
- W2941861054 cites W2031769266 @default.
- W2941861054 cites W2032170121 @default.
- W2941861054 cites W2038227460 @default.
- W2941861054 cites W2044735270 @default.
- W2941861054 cites W2050419479 @default.
- W2941861054 cites W2051502925 @default.
- W2941861054 cites W2058791286 @default.
- W2941861054 cites W2065981691 @default.
- W2941861054 cites W2066390116 @default.
- W2941861054 cites W2072796675 @default.
- W2941861054 cites W2073747356 @default.
- W2941861054 cites W2075243656 @default.
- W2941861054 cites W2080920186 @default.
- W2941861054 cites W2081059284 @default.
- W2941861054 cites W2083927079 @default.
- W2941861054 cites W2087936470 @default.
- W2941861054 cites W2098395403 @default.
- W2941861054 cites W2109510860 @default.
- W2941861054 cites W2111072639 @default.
- W2941861054 cites W2133752269 @default.
- W2941861054 cites W2180317557 @default.
- W2941861054 cites W2293354547 @default.
- W2941861054 cites W2321536237 @default.
- W2941861054 cites W2518980640 @default.
- W2941861054 cites W2521607306 @default.
- W2941861054 cites W252542266 @default.
- W2941861054 cites W2590661630 @default.
- W2941861054 cites W2612082766 @default.
- W2941861054 cites W2620342366 @default.
- W2941861054 cites W2744818200 @default.
- W2941861054 cites W2766986120 @default.
- W2941861054 cites W2772858445 @default.
- W2941861054 cites W2792338922 @default.
- W2941861054 cites W2793490331 @default.
- W2941861054 cites W2799686667 @default.
- W2941861054 cites W2800138630 @default.
- W2941861054 cites W2802180511 @default.
- W2941861054 cites W2898307789 @default.
- W2941861054 cites W341735883 @default.
- W2941861054 cites W388323479 @default.
- W2941861054 cites W4241727697 @default.
- W2941861054 doi "https://doi.org/10.1016/j.asoc.2019.04.026" @default.
- W2941861054 hasPublicationYear "2019" @default.
- W2941861054 type Work @default.
- W2941861054 sameAs 2941861054 @default.
- W2941861054 citedByCount "61" @default.
- W2941861054 countsByYear W29418610542020 @default.
- W2941861054 countsByYear W29418610542021 @default.
- W2941861054 countsByYear W29418610542022 @default.
- W2941861054 countsByYear W29418610542023 @default.
- W2941861054 crossrefType "journal-article" @default.
- W2941861054 hasAuthorship W2941861054A5025078574 @default.
- W2941861054 hasAuthorship W2941861054A5047784763 @default.
- W2941861054 hasAuthorship W2941861054A5054611665 @default.
- W2941861054 hasConcept C11413529 @default.
- W2941861054 hasConcept C119857082 @default.
- W2941861054 hasConcept C124101348 @default.
- W2941861054 hasConcept C126255220 @default.
- W2941861054 hasConcept C151406439 @default.
- W2941861054 hasConcept C154945302 @default.
- W2941861054 hasConcept C24338571 @default.
- W2941861054 hasConcept C33923547 @default.
- W2941861054 hasConcept C41008148 @default.
- W2941861054 hasConcept C50644808 @default.
- W2941861054 hasConcept C58166 @default.
- W2941861054 hasConceptScore W2941861054C11413529 @default.
- W2941861054 hasConceptScore W2941861054C119857082 @default.
- W2941861054 hasConceptScore W2941861054C124101348 @default.
- W2941861054 hasConceptScore W2941861054C126255220 @default.
- W2941861054 hasConceptScore W2941861054C151406439 @default.
- W2941861054 hasConceptScore W2941861054C154945302 @default.