Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941898360> ?p ?o ?g. }
- W2941898360 endingPage "52190" @default.
- W2941898360 startingPage "52181" @default.
- W2941898360 abstract "Anomaly-based intrusion detection systems (IDSs) have been deployed to monitor network activity and to protect systems and the Internet of Things (IoT) devices from attacks (or intrusions). The problem with these systems is that they generate a huge amount of inappropriate false alarms whenever abnormal activities are detected and they are not too flexible for a complex environment. The high-level rate of the generated false alarms reduces the performance of IDS against cyber-attacks and makes the tasks of the security analyst particularly difficult and the management of intrusion detection process computationally expensive. We study here one of the challenging aspects of computer and network security and we propose to build a detection model for both known and unknown intrusions (or anomaly detection) via a novel nonparametric Bayesian model. The design of our framework can be extended easily to be adequate for IoT technology and notably for intelligent smart city web-based applications. In our method, we learn the patterns of the activities (both normal and anomalous) through a Bayesian-based MCMC inference for infinite bounded generalized Gaussian mixture models. Contrary to classic clustering methods, our approach does not need to specify the number of clusters, takes into consideration the uncertainty via the introduction of prior knowledge for the parameters of the model, and permits to solve problems related to over- and under-fitting. In order to get better clustering performance, feature weights, model’s parameters, and the number of clusters are estimated simultaneously and automatically. The developed approach was evaluated using popular data sets. The obtained results demonstrate the efficiency of our approach in detecting various attacks." @default.
- W2941898360 created "2019-05-03" @default.
- W2941898360 creator A5003710841 @default.
- W2941898360 creator A5010706593 @default.
- W2941898360 creator A5021988081 @default.
- W2941898360 creator A5024097894 @default.
- W2941898360 creator A5090600716 @default.
- W2941898360 date "2019-01-01" @default.
- W2941898360 modified "2023-10-14" @default.
- W2941898360 title "Network Anomaly Intrusion Detection Using a Nonparametric Bayesian Approach and Feature Selection" @default.
- W2941898360 cites W144252458 @default.
- W2941898360 cites W1966809779 @default.
- W2941898360 cites W1969082358 @default.
- W2941898360 cites W1972525513 @default.
- W2941898360 cites W1975973384 @default.
- W2941898360 cites W2008224380 @default.
- W2941898360 cites W2009058336 @default.
- W2941898360 cites W2031163547 @default.
- W2941898360 cites W2035893370 @default.
- W2941898360 cites W2054765427 @default.
- W2941898360 cites W2071897576 @default.
- W2941898360 cites W2080972498 @default.
- W2941898360 cites W2099940443 @default.
- W2941898360 cites W2100200066 @default.
- W2941898360 cites W2107192713 @default.
- W2941898360 cites W2120000263 @default.
- W2941898360 cites W2123619513 @default.
- W2941898360 cites W2139242328 @default.
- W2941898360 cites W2139669429 @default.
- W2941898360 cites W2142889610 @default.
- W2941898360 cites W2146082061 @default.
- W2941898360 cites W2153157120 @default.
- W2941898360 cites W2278186031 @default.
- W2941898360 cites W2342408547 @default.
- W2941898360 cites W2425246132 @default.
- W2941898360 cites W2488678869 @default.
- W2941898360 cites W2527999453 @default.
- W2941898360 cites W2590373591 @default.
- W2941898360 cites W2756940441 @default.
- W2941898360 cites W2793631173 @default.
- W2941898360 cites W2804552401 @default.
- W2941898360 cites W2804941162 @default.
- W2941898360 cites W2810076684 @default.
- W2941898360 cites W2903662607 @default.
- W2941898360 cites W2913356243 @default.
- W2941898360 cites W2914207527 @default.
- W2941898360 cites W4231975640 @default.
- W2941898360 cites W433644524 @default.
- W2941898360 cites W1918591755 @default.
- W2941898360 doi "https://doi.org/10.1109/access.2019.2912115" @default.
- W2941898360 hasPublicationYear "2019" @default.
- W2941898360 type Work @default.
- W2941898360 sameAs 2941898360 @default.
- W2941898360 citedByCount "79" @default.
- W2941898360 countsByYear W29418983602019 @default.
- W2941898360 countsByYear W29418983602020 @default.
- W2941898360 countsByYear W29418983602021 @default.
- W2941898360 countsByYear W29418983602022 @default.
- W2941898360 countsByYear W29418983602023 @default.
- W2941898360 crossrefType "journal-article" @default.
- W2941898360 hasAuthorship W2941898360A5003710841 @default.
- W2941898360 hasAuthorship W2941898360A5010706593 @default.
- W2941898360 hasAuthorship W2941898360A5021988081 @default.
- W2941898360 hasAuthorship W2941898360A5024097894 @default.
- W2941898360 hasAuthorship W2941898360A5090600716 @default.
- W2941898360 hasBestOaLocation W29418983601 @default.
- W2941898360 hasConcept C111919701 @default.
- W2941898360 hasConcept C119857082 @default.
- W2941898360 hasConcept C124101348 @default.
- W2941898360 hasConcept C137524506 @default.
- W2941898360 hasConcept C148483581 @default.
- W2941898360 hasConcept C154945302 @default.
- W2941898360 hasConcept C182590292 @default.
- W2941898360 hasConcept C2776214188 @default.
- W2941898360 hasConcept C33724603 @default.
- W2941898360 hasConcept C35525427 @default.
- W2941898360 hasConcept C41008148 @default.
- W2941898360 hasConcept C61224824 @default.
- W2941898360 hasConcept C73555534 @default.
- W2941898360 hasConcept C739882 @default.
- W2941898360 hasConceptScore W2941898360C111919701 @default.
- W2941898360 hasConceptScore W2941898360C119857082 @default.
- W2941898360 hasConceptScore W2941898360C124101348 @default.
- W2941898360 hasConceptScore W2941898360C137524506 @default.
- W2941898360 hasConceptScore W2941898360C148483581 @default.
- W2941898360 hasConceptScore W2941898360C154945302 @default.
- W2941898360 hasConceptScore W2941898360C182590292 @default.
- W2941898360 hasConceptScore W2941898360C2776214188 @default.
- W2941898360 hasConceptScore W2941898360C33724603 @default.
- W2941898360 hasConceptScore W2941898360C35525427 @default.
- W2941898360 hasConceptScore W2941898360C41008148 @default.
- W2941898360 hasConceptScore W2941898360C61224824 @default.
- W2941898360 hasConceptScore W2941898360C73555534 @default.
- W2941898360 hasConceptScore W2941898360C739882 @default.
- W2941898360 hasFunder F4320323722 @default.
- W2941898360 hasLocation W29418983601 @default.
- W2941898360 hasLocation W29418983602 @default.
- W2941898360 hasOpenAccess W2941898360 @default.