Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942018604> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2942018604 abstract "The 3D reconstruction and modeling of face, objects and surrounding environment etc., has gained significant attention from the research community in recent days. Availability of depth data from various active and passive sensors have accelerated the work in 3D domain. It finds various applications in robotics, Human Computer Interaction (HCI), medical analysis etc. The major challenge in this area is accurate and real time 3D pose estimation which forms the basis for alignment of multi-view point cloud data. Noise in the depth data due to sensor irregularities significantly affects the accuracy of pose estimation. The main idea of this paper is to compute 2D A-KAZE feature correspondence and map to 3D for obtaining more reliable 3D sparse points. The 2D-3D correspondence is used to estimate accurate pose by formulating a graph optimization problem. The experimental results of this approach is evaluated against well known Iterative Closest Point (ICP) and Singular Value Decomposition (SVD) methods for point cloud registration on face and object data obtained using stereo camera. The results shows that the algorithm is able to estimate the accurate pose with least alignment error as compared with ICP and SVD methods." @default.
- W2942018604 created "2019-05-03" @default.
- W2942018604 creator A5020963055 @default.
- W2942018604 creator A5045202290 @default.
- W2942018604 creator A5073411722 @default.
- W2942018604 date "2019-04-01" @default.
- W2942018604 modified "2023-10-14" @default.
- W2942018604 title "3D Point Cloud Registration using A-KAZE Features and Graph Optimization" @default.
- W2942018604 cites W2048710758 @default.
- W2942018604 cites W2049981393 @default.
- W2942018604 cites W2109064983 @default.
- W2942018604 cites W2117248802 @default.
- W2942018604 cites W2167667767 @default.
- W2942018604 cites W2196111060 @default.
- W2942018604 cites W2799112149 @default.
- W2942018604 cites W2835857191 @default.
- W2942018604 cites W2805574585 @default.
- W2942018604 doi "https://doi.org/10.1109/iccsp.2019.8697917" @default.
- W2942018604 hasPublicationYear "2019" @default.
- W2942018604 type Work @default.
- W2942018604 sameAs 2942018604 @default.
- W2942018604 citedByCount "1" @default.
- W2942018604 countsByYear W29420186042022 @default.
- W2942018604 crossrefType "proceedings-article" @default.
- W2942018604 hasAuthorship W2942018604A5020963055 @default.
- W2942018604 hasAuthorship W2942018604A5045202290 @default.
- W2942018604 hasAuthorship W2942018604A5073411722 @default.
- W2942018604 hasConcept C111919701 @default.
- W2942018604 hasConcept C115961682 @default.
- W2942018604 hasConcept C131979681 @default.
- W2942018604 hasConcept C132525143 @default.
- W2942018604 hasConcept C154945302 @default.
- W2942018604 hasConcept C166704113 @default.
- W2942018604 hasConcept C195958017 @default.
- W2942018604 hasConcept C2524010 @default.
- W2942018604 hasConcept C28719098 @default.
- W2942018604 hasConcept C31972630 @default.
- W2942018604 hasConcept C33923547 @default.
- W2942018604 hasConcept C41008148 @default.
- W2942018604 hasConcept C79974875 @default.
- W2942018604 hasConcept C80444323 @default.
- W2942018604 hasConceptScore W2942018604C111919701 @default.
- W2942018604 hasConceptScore W2942018604C115961682 @default.
- W2942018604 hasConceptScore W2942018604C131979681 @default.
- W2942018604 hasConceptScore W2942018604C132525143 @default.
- W2942018604 hasConceptScore W2942018604C154945302 @default.
- W2942018604 hasConceptScore W2942018604C166704113 @default.
- W2942018604 hasConceptScore W2942018604C195958017 @default.
- W2942018604 hasConceptScore W2942018604C2524010 @default.
- W2942018604 hasConceptScore W2942018604C28719098 @default.
- W2942018604 hasConceptScore W2942018604C31972630 @default.
- W2942018604 hasConceptScore W2942018604C33923547 @default.
- W2942018604 hasConceptScore W2942018604C41008148 @default.
- W2942018604 hasConceptScore W2942018604C79974875 @default.
- W2942018604 hasConceptScore W2942018604C80444323 @default.
- W2942018604 hasLocation W29420186041 @default.
- W2942018604 hasOpenAccess W2942018604 @default.
- W2942018604 hasPrimaryLocation W29420186041 @default.
- W2942018604 hasRelatedWork W1984399132 @default.
- W2942018604 hasRelatedWork W2345502261 @default.
- W2942018604 hasRelatedWork W2367496413 @default.
- W2942018604 hasRelatedWork W2556085923 @default.
- W2942018604 hasRelatedWork W2613626105 @default.
- W2942018604 hasRelatedWork W2965051622 @default.
- W2942018604 hasRelatedWork W3172823523 @default.
- W2942018604 hasRelatedWork W3192681335 @default.
- W2942018604 hasRelatedWork W3204162010 @default.
- W2942018604 hasRelatedWork W4310007291 @default.
- W2942018604 isParatext "false" @default.
- W2942018604 isRetracted "false" @default.
- W2942018604 magId "2942018604" @default.
- W2942018604 workType "article" @default.