Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942026219> ?p ?o ?g. }
- W2942026219 abstract "Abstract Background Histopathological images contain rich phenotypic descriptions of the molecular processes underlying disease progression. Convolutional neural networks (CNNs), a state-of-the-art image analysis technique in computer vision, automatically learns representative features from such images which can be useful for disease diagnosis, prognosis, and subtyping. Despite hepatocellular carcinoma (HCC) being the sixth most common type of primary liver malignancy with a high mortality rate, little previous work has made use of CNN models to delineate the importance of histopathological images in diagnosis and clinical survival of HCC. Results We applied three pre-trained CNN models – VGG 16, Inception V3, and ResNet 50 – to extract features from HCC histopathological images. The visualization and classification showed clear separation between cancer and normal samples using image features. In a univariate Cox regression analysis, 21.4% and 16% of image features on average were significantly associated with overall survival and disease-free survival, respectively. We also observed significant correlations between these features and integrated biological pathways derived from gene expression and copy number variation. Using an elastic net regularized CoxPH model of overall survival, we obtained a concordance index (C-index) of 0.789 and a significant log-rank test (p = 7.6E-18) after applying Inception image features. We also performed unsupervised classification to identify HCC subgroups from image features. The optimal two subgroups discovered using Inception image features were significantly associated with both overall (C-index = 0.628 and p = 7.39E-07) and disease-free survival (C-index =0.558 and p = 0.012). Our results suggest the feasibility of feature extraction using pre-trained models, as well as the utility of the resulting features to build an accurate prognosis model of HCC and highlight significant correlations with clinical survival and biological pathways. Conclusions The image features extracted from HCC histopathological images using the pre-trained CNN models VGG 16, Inception V3 and ResNet 50 can accurately distinguish normal and cancer samples. Furthermore, these image features are significantly correlated with relevant biological outcomes." @default.
- W2942026219 created "2019-05-03" @default.
- W2942026219 creator A5008117143 @default.
- W2942026219 creator A5036160602 @default.
- W2942026219 date "2019-04-26" @default.
- W2942026219 modified "2023-09-26" @default.
- W2942026219 title "Prognostic Analysis of Histopathological Images Using Pre-Trained Convolutional Neural Networks" @default.
- W2942026219 cites W121839966 @default.
- W2942026219 cites W1550667671 @default.
- W2942026219 cites W1986865930 @default.
- W2942026219 cites W1987971958 @default.
- W2942026219 cites W1991607042 @default.
- W2942026219 cites W2018851752 @default.
- W2942026219 cites W2024957890 @default.
- W2942026219 cites W2026915451 @default.
- W2942026219 cites W2051224630 @default.
- W2942026219 cites W2060300932 @default.
- W2942026219 cites W2067487060 @default.
- W2942026219 cites W2068127752 @default.
- W2942026219 cites W2100714130 @default.
- W2942026219 cites W2103243046 @default.
- W2942026219 cites W2108598243 @default.
- W2942026219 cites W2110065044 @default.
- W2942026219 cites W2110567472 @default.
- W2942026219 cites W2117409112 @default.
- W2942026219 cites W2136415416 @default.
- W2942026219 cites W2149407433 @default.
- W2942026219 cites W2150593711 @default.
- W2942026219 cites W2203982515 @default.
- W2942026219 cites W2253429366 @default.
- W2942026219 cites W2264887978 @default.
- W2942026219 cites W2314375584 @default.
- W2942026219 cites W2408688145 @default.
- W2942026219 cites W2533800772 @default.
- W2942026219 cites W2557738935 @default.
- W2942026219 cites W2581082771 @default.
- W2942026219 cites W2592929672 @default.
- W2942026219 cites W2597990875 @default.
- W2942026219 cites W2607941059 @default.
- W2942026219 cites W2612910794 @default.
- W2942026219 cites W2622826443 @default.
- W2942026219 cites W2625559053 @default.
- W2942026219 cites W2735991220 @default.
- W2942026219 cites W2741865537 @default.
- W2942026219 cites W2751723768 @default.
- W2942026219 cites W2766845401 @default.
- W2942026219 cites W2772723798 @default.
- W2942026219 cites W2809254203 @default.
- W2942026219 cites W2891594311 @default.
- W2942026219 cites W2919115771 @default.
- W2942026219 cites W2949310256 @default.
- W2942026219 cites W2962984400 @default.
- W2942026219 cites W2964152645 @default.
- W2942026219 cites W3103901651 @default.
- W2942026219 cites W4211183069 @default.
- W2942026219 doi "https://doi.org/10.1101/620773" @default.
- W2942026219 hasPublicationYear "2019" @default.
- W2942026219 type Work @default.
- W2942026219 sameAs 2942026219 @default.
- W2942026219 citedByCount "1" @default.
- W2942026219 countsByYear W29420262192021 @default.
- W2942026219 crossrefType "posted-content" @default.
- W2942026219 hasAuthorship W2942026219A5008117143 @default.
- W2942026219 hasAuthorship W2942026219A5036160602 @default.
- W2942026219 hasBestOaLocation W29420262191 @default.
- W2942026219 hasConcept C10515644 @default.
- W2942026219 hasConcept C119857082 @default.
- W2942026219 hasConcept C126322002 @default.
- W2942026219 hasConcept C142724271 @default.
- W2942026219 hasConcept C144301174 @default.
- W2942026219 hasConcept C153180895 @default.
- W2942026219 hasConcept C154945302 @default.
- W2942026219 hasConcept C160798450 @default.
- W2942026219 hasConcept C161584116 @default.
- W2942026219 hasConcept C199163554 @default.
- W2942026219 hasConcept C199360897 @default.
- W2942026219 hasConcept C2778019345 @default.
- W2942026219 hasConcept C2779399171 @default.
- W2942026219 hasConcept C38180746 @default.
- W2942026219 hasConcept C41008148 @default.
- W2942026219 hasConcept C50382708 @default.
- W2942026219 hasConcept C66339696 @default.
- W2942026219 hasConcept C71924100 @default.
- W2942026219 hasConcept C81363708 @default.
- W2942026219 hasConcept C83852419 @default.
- W2942026219 hasConceptScore W2942026219C10515644 @default.
- W2942026219 hasConceptScore W2942026219C119857082 @default.
- W2942026219 hasConceptScore W2942026219C126322002 @default.
- W2942026219 hasConceptScore W2942026219C142724271 @default.
- W2942026219 hasConceptScore W2942026219C144301174 @default.
- W2942026219 hasConceptScore W2942026219C153180895 @default.
- W2942026219 hasConceptScore W2942026219C154945302 @default.
- W2942026219 hasConceptScore W2942026219C160798450 @default.
- W2942026219 hasConceptScore W2942026219C161584116 @default.
- W2942026219 hasConceptScore W2942026219C199163554 @default.
- W2942026219 hasConceptScore W2942026219C199360897 @default.
- W2942026219 hasConceptScore W2942026219C2778019345 @default.
- W2942026219 hasConceptScore W2942026219C2779399171 @default.
- W2942026219 hasConceptScore W2942026219C38180746 @default.
- W2942026219 hasConceptScore W2942026219C41008148 @default.