Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942063646> ?p ?o ?g. }
- W2942063646 abstract "Context. The problem of automated processing and analysis of microscopy image data is of high relevance due to its extreme impact on the research and recent developments in the field of biology and medicine. Efficient image processing algorithms facilitate the development of new medical diagnostic tools and therapy processes. They help us to broaden our knowledge of underlying mechanisms and processes inside living organisms. The primal focus of this paper is the processing of the microscopy images of the biological neural network. This aims to facilitate further studies of biological neural network that would lead to the development of better methods for diagnosis, prevention and cure of the related deceases. Objective. The goal of the work is to development of an efficient image processing algorithm for segmenting the network of biological neurons based on the fluorescent microscopy image data. Method. The introduced algorithm for segmenting the network of biological neurons comprises several steps. Firstly, we apply image processing routines, which aim to enhance the quality of the image data and extract the contours of the biological neural network. Then we construct the skeleton of the network applying the Voronoi diagram for line segments extracted from the object’s contours. We employ Voronoi skeleton to identify the cellular somas and differentiate them from axons and dendrites. Results. The developed Voronoi-based algorithm allows us to segment individual neurons, localize their somas, axons and dendrites and extract graph representation of the neural network. The underlying Voronoi diagram data structure allows us to compute such graph efficiently in O(N log N) operations (where N is a number of contour points). The proposed segmentation method was implemented in the C++/Python programming language and evaluated on the fluorescent images from CellImageLibrary (CIL). Conclusions. The proposed segmentation method aims to facilitate studies of biological neural networks. It computes segmentation of the network of biological neurons in O(N log N) operations using the Voronoi diagram data structure. This data structure, in turn, gives us an attributed graph representation of the segmented network. Therefore, classical graph processing algorithms can be applied to analyze the neural and compute such network’s characteristics as the number of connections between individual neurons, the shortest signal transduction path between two neurons, etc." @default.
- W2942063646 created "2019-05-03" @default.
- W2942063646 creator A5041430767 @default.
- W2942063646 creator A5068939222 @default.
- W2942063646 date "2019-04-16" @default.
- W2942063646 modified "2023-09-28" @default.
- W2942063646 title "VORONOI-BASED SKELETONIZATION ALGORITHM FOR SEGMENTING THE NETWORK OF BIOLOGICAL NEURONS" @default.
- W2942063646 cites W1482214570 @default.
- W2942063646 cites W1507039213 @default.
- W2942063646 cites W1587637157 @default.
- W2942063646 cites W1753211532 @default.
- W2942063646 cites W1971167883 @default.
- W2942063646 cites W1998277076 @default.
- W2942063646 cites W2007610503 @default.
- W2942063646 cites W2039367092 @default.
- W2942063646 cites W2044894054 @default.
- W2942063646 cites W2070164574 @default.
- W2942063646 cites W2092924973 @default.
- W2942063646 cites W2102698015 @default.
- W2942063646 cites W2106990937 @default.
- W2942063646 cites W2118220553 @default.
- W2942063646 cites W2119339582 @default.
- W2942063646 cites W2123577201 @default.
- W2942063646 cites W2129534965 @default.
- W2942063646 cites W2134313450 @default.
- W2942063646 cites W2142796063 @default.
- W2942063646 cites W2144597125 @default.
- W2942063646 cites W2148542317 @default.
- W2942063646 cites W2154851379 @default.
- W2942063646 cites W2232710831 @default.
- W2942063646 cites W2483701722 @default.
- W2942063646 cites W2774779442 @default.
- W2942063646 cites W2792046266 @default.
- W2942063646 cites W3041834803 @default.
- W2942063646 cites W596522316 @default.
- W2942063646 doi "https://doi.org/10.15588/1607-3274-2019-1-10" @default.
- W2942063646 hasPublicationYear "2019" @default.
- W2942063646 type Work @default.
- W2942063646 sameAs 2942063646 @default.
- W2942063646 citedByCount "0" @default.
- W2942063646 crossrefType "journal-article" @default.
- W2942063646 hasAuthorship W2942063646A5041430767 @default.
- W2942063646 hasAuthorship W2942063646A5068939222 @default.
- W2942063646 hasBestOaLocation W29420636461 @default.
- W2942063646 hasConcept C11413529 @default.
- W2942063646 hasConcept C115961682 @default.
- W2942063646 hasConcept C124504099 @default.
- W2942063646 hasConcept C125308379 @default.
- W2942063646 hasConcept C132525143 @default.
- W2942063646 hasConcept C144133560 @default.
- W2942063646 hasConcept C153180895 @default.
- W2942063646 hasConcept C154945302 @default.
- W2942063646 hasConcept C162853370 @default.
- W2942063646 hasConcept C23951316 @default.
- W2942063646 hasConcept C24881265 @default.
- W2942063646 hasConcept C2524010 @default.
- W2942063646 hasConcept C31972630 @default.
- W2942063646 hasConcept C33923547 @default.
- W2942063646 hasConcept C41008148 @default.
- W2942063646 hasConcept C50644808 @default.
- W2942063646 hasConcept C80444323 @default.
- W2942063646 hasConcept C89600930 @default.
- W2942063646 hasConcept C9417928 @default.
- W2942063646 hasConceptScore W2942063646C11413529 @default.
- W2942063646 hasConceptScore W2942063646C115961682 @default.
- W2942063646 hasConceptScore W2942063646C124504099 @default.
- W2942063646 hasConceptScore W2942063646C125308379 @default.
- W2942063646 hasConceptScore W2942063646C132525143 @default.
- W2942063646 hasConceptScore W2942063646C144133560 @default.
- W2942063646 hasConceptScore W2942063646C153180895 @default.
- W2942063646 hasConceptScore W2942063646C154945302 @default.
- W2942063646 hasConceptScore W2942063646C162853370 @default.
- W2942063646 hasConceptScore W2942063646C23951316 @default.
- W2942063646 hasConceptScore W2942063646C24881265 @default.
- W2942063646 hasConceptScore W2942063646C2524010 @default.
- W2942063646 hasConceptScore W2942063646C31972630 @default.
- W2942063646 hasConceptScore W2942063646C33923547 @default.
- W2942063646 hasConceptScore W2942063646C41008148 @default.
- W2942063646 hasConceptScore W2942063646C50644808 @default.
- W2942063646 hasConceptScore W2942063646C80444323 @default.
- W2942063646 hasConceptScore W2942063646C89600930 @default.
- W2942063646 hasConceptScore W2942063646C9417928 @default.
- W2942063646 hasLocation W29420636461 @default.
- W2942063646 hasOpenAccess W2942063646 @default.
- W2942063646 hasPrimaryLocation W29420636461 @default.
- W2942063646 hasRelatedWork W1999478155 @default.
- W2942063646 hasRelatedWork W2041777800 @default.
- W2942063646 hasRelatedWork W2217266898 @default.
- W2942063646 hasRelatedWork W2333017092 @default.
- W2942063646 hasRelatedWork W2340326439 @default.
- W2942063646 hasRelatedWork W2626761372 @default.
- W2942063646 hasRelatedWork W2698421785 @default.
- W2942063646 hasRelatedWork W2781812799 @default.
- W2942063646 hasRelatedWork W2891037900 @default.
- W2942063646 hasRelatedWork W2911979188 @default.
- W2942063646 hasRelatedWork W2986434565 @default.
- W2942063646 hasRelatedWork W3125102600 @default.
- W2942063646 hasRelatedWork W3143810167 @default.
- W2942063646 hasRelatedWork W3163478524 @default.
- W2942063646 hasRelatedWork W38094132 @default.