Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942135495> ?p ?o ?g. }
- W2942135495 endingPage "713" @default.
- W2942135495 startingPage "713" @default.
- W2942135495 abstract "Feature extraction in cloud shadows is a difficult problem in the field of optical remote sensing. The key to solving this problem is to improve the accuracy of classification algorithms by fusing multi-source remotely sensed data. Hyperspectral data have rich spectral information but highly suffer from cloud shadows, whereas light detection and ranging (LiDAR) data can be acquired from beneath clouds to provide accurate height information. In this study, fused airborne LiDAR and hyperspectral data were used to extract urban objects in cloud shadows using the following steps: (1) a series of LiDAR and hyperspectral metrics were extracted and selected; (2) cloud shadows were extracted; (3) the new proposed approach was used by combining a pixel-based support vector machine (SVM) and object-based classifiers to extract urban objects in cloud shadows; (4) a pixel-based SVM classifier was used for the classification of the whole study area with the selected metrics; (5) a decision-fusion strategy was employed to get the final results for the whole study area; (6) accuracy assessment was conducted. Compared with the SVM classification results, the decision-fusion results of the combined SVM and object-based classifiers show that the overall classification accuracy is improved by 5.00% (from 87.30% to 92.30%). The experimental results confirm that the proposed method is very effective for urban object extraction in cloud shadows and thus improve urban applications such as urban green land management, land use analysis, and impervious surface assessment." @default.
- W2942135495 created "2019-05-03" @default.
- W2942135495 creator A5012009055 @default.
- W2942135495 creator A5045844648 @default.
- W2942135495 date "2019-03-25" @default.
- W2942135495 modified "2023-09-26" @default.
- W2942135495 title "Extraction of Urban Objects in Cloud Shadows on the basis of Fusion of Airborne LiDAR and Hyperspectral Data" @default.
- W2942135495 cites W1964262728 @default.
- W2942135495 cites W1965309615 @default.
- W2942135495 cites W1970535395 @default.
- W2942135495 cites W1976099651 @default.
- W2942135495 cites W1979380822 @default.
- W2942135495 cites W1980252875 @default.
- W2942135495 cites W1997478538 @default.
- W2942135495 cites W2002392274 @default.
- W2942135495 cites W2006888104 @default.
- W2942135495 cites W2011215055 @default.
- W2942135495 cites W2015620132 @default.
- W2942135495 cites W2016453144 @default.
- W2942135495 cites W2025389829 @default.
- W2942135495 cites W2029597490 @default.
- W2942135495 cites W2029759810 @default.
- W2942135495 cites W2031138951 @default.
- W2942135495 cites W2032729760 @default.
- W2942135495 cites W2035285838 @default.
- W2942135495 cites W2036905074 @default.
- W2942135495 cites W2039067795 @default.
- W2942135495 cites W2043665634 @default.
- W2942135495 cites W2051999985 @default.
- W2942135495 cites W2057404971 @default.
- W2942135495 cites W2059390551 @default.
- W2942135495 cites W2065407071 @default.
- W2942135495 cites W2065769426 @default.
- W2942135495 cites W2068223371 @default.
- W2942135495 cites W2076945639 @default.
- W2942135495 cites W2077046239 @default.
- W2942135495 cites W2080680225 @default.
- W2942135495 cites W2086103748 @default.
- W2942135495 cites W2087951500 @default.
- W2942135495 cites W2095028777 @default.
- W2942135495 cites W2099839695 @default.
- W2942135495 cites W2101345441 @default.
- W2942135495 cites W2102270813 @default.
- W2942135495 cites W2105090634 @default.
- W2942135495 cites W2113818227 @default.
- W2942135495 cites W2114664399 @default.
- W2942135495 cites W2115428718 @default.
- W2942135495 cites W2123907688 @default.
- W2942135495 cites W2124503034 @default.
- W2942135495 cites W2131911315 @default.
- W2942135495 cites W2134594501 @default.
- W2942135495 cites W2136192719 @default.
- W2942135495 cites W2138973222 @default.
- W2942135495 cites W2142624305 @default.
- W2942135495 cites W2144158466 @default.
- W2942135495 cites W2161930174 @default.
- W2942135495 cites W2167350337 @default.
- W2942135495 cites W2239022495 @default.
- W2942135495 cites W2408895021 @default.
- W2942135495 cites W2418780032 @default.
- W2942135495 cites W2538282875 @default.
- W2942135495 cites W2566759027 @default.
- W2942135495 cites W2569923831 @default.
- W2942135495 cites W2599078391 @default.
- W2942135495 cites W2603392361 @default.
- W2942135495 cites W2612076836 @default.
- W2942135495 cites W2622209149 @default.
- W2942135495 cites W2626015899 @default.
- W2942135495 cites W2743111138 @default.
- W2942135495 cites W2744049245 @default.
- W2942135495 cites W2746661731 @default.
- W2942135495 cites W2767953525 @default.
- W2942135495 cites W2769616159 @default.
- W2942135495 cites W897634805 @default.
- W2942135495 doi "https://doi.org/10.3390/rs11060713" @default.
- W2942135495 hasPublicationYear "2019" @default.
- W2942135495 type Work @default.
- W2942135495 sameAs 2942135495 @default.
- W2942135495 citedByCount "5" @default.
- W2942135495 countsByYear W29421354952019 @default.
- W2942135495 countsByYear W29421354952020 @default.
- W2942135495 countsByYear W29421354952023 @default.
- W2942135495 crossrefType "journal-article" @default.
- W2942135495 hasAuthorship W2942135495A5012009055 @default.
- W2942135495 hasAuthorship W2942135495A5045844648 @default.
- W2942135495 hasBestOaLocation W29421354951 @default.
- W2942135495 hasConcept C111919701 @default.
- W2942135495 hasConcept C12267149 @default.
- W2942135495 hasConcept C154945302 @default.
- W2942135495 hasConcept C159078339 @default.
- W2942135495 hasConcept C18903297 @default.
- W2942135495 hasConcept C205649164 @default.
- W2942135495 hasConcept C2668921 @default.
- W2942135495 hasConcept C31972630 @default.
- W2942135495 hasConcept C33954974 @default.
- W2942135495 hasConcept C41008148 @default.
- W2942135495 hasConcept C51399673 @default.
- W2942135495 hasConcept C52622490 @default.