Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942145362> ?p ?o ?g. }
- W2942145362 endingPage "88" @default.
- W2942145362 startingPage "71" @default.
- W2942145362 abstract "Purpose Construction materials comprise a major part of the total construction cost. Given the importance of bitumen as a fundamental material in construction projects, it is imperative to have an accurate forecast of its consumption in the planning and material sourcing phases on the project. This study aims to introduce a flexible genetic algorithm-fuzzy regression approach for forecasting the future bitumen consumption. Design/methodology/approach In the proposed approach, the parameter tuning process is performed on all parameters of genetic algorithm (GA), and the finest coefficients with minimum errors are identified. Moreover, the fuzzy regression (FR) model is used for estimation. Analysis of variance (ANOVA) is used for selecting among GA, FR or conventional regression (CR). To show the applicability of the proposed approach, Iran’s bitumen consumption data in the period of 1991-2006 are used as a case study. Findings Production, import, export, road construction and price are considered as the input data used in the present study. It was concluded that, among all the forecasting methods used in this study, GA was the best method for estimating. Practical implications The proposed approach outperforms the conventional forecasting methods for the case of bitumen which is a fundamental economic ingredient in road construction projects. This approach is flexible, in terms of amount and uncertainty of the input data, and can be easily adapted for forecasting other materials and in different construction projects. It can have important implications for the managers and policy makers in the construction market where accurate estimation of the raw material demand is crucial. Originality/value This is the first in this field introducing a flexible GA-FR approach for improving bitumen consumption estimation in the construction literature. The proposed approach’s significance has two folds. Firstly, it is completely flexible. Secondly, it uses CRs as an alternative approach for estimation because of its dynamic structure." @default.
- W2942145362 created "2019-05-03" @default.
- W2942145362 creator A5016148765 @default.
- W2942145362 creator A5017029449 @default.
- W2942145362 creator A5045854980 @default.
- W2942145362 creator A5082807156 @default.
- W2942145362 date "2019-03-05" @default.
- W2942145362 modified "2023-10-18" @default.
- W2942145362 title "A flexible genetic algorithm-fuzzy regression approach for forecasting" @default.
- W2942145362 cites W1541843935 @default.
- W2942145362 cites W1604088362 @default.
- W2942145362 cites W1761317471 @default.
- W2942145362 cites W1967180919 @default.
- W2942145362 cites W1967910184 @default.
- W2942145362 cites W1976519713 @default.
- W2942145362 cites W1985266527 @default.
- W2942145362 cites W1987402665 @default.
- W2942145362 cites W1992443107 @default.
- W2942145362 cites W2031175291 @default.
- W2942145362 cites W2042739566 @default.
- W2942145362 cites W2054175390 @default.
- W2942145362 cites W2055728483 @default.
- W2942145362 cites W2056611606 @default.
- W2942145362 cites W2058253069 @default.
- W2942145362 cites W2058830454 @default.
- W2942145362 cites W2066383264 @default.
- W2942145362 cites W2074032493 @default.
- W2942145362 cites W2090791685 @default.
- W2942145362 cites W2091576461 @default.
- W2942145362 cites W2094054185 @default.
- W2942145362 cites W2113432484 @default.
- W2942145362 cites W2128890213 @default.
- W2942145362 cites W2154512226 @default.
- W2942145362 cites W2166922785 @default.
- W2942145362 cites W2312795577 @default.
- W2942145362 cites W2463623591 @default.
- W2942145362 cites W2526441567 @default.
- W2942145362 cites W2602816550 @default.
- W2942145362 cites W4238919913 @default.
- W2942145362 doi "https://doi.org/10.1108/ci-11-2017-0089" @default.
- W2942145362 hasPublicationYear "2019" @default.
- W2942145362 type Work @default.
- W2942145362 sameAs 2942145362 @default.
- W2942145362 citedByCount "5" @default.
- W2942145362 countsByYear W29421453622022 @default.
- W2942145362 countsByYear W29421453622023 @default.
- W2942145362 crossrefType "journal-article" @default.
- W2942145362 hasAuthorship W2942145362A5016148765 @default.
- W2942145362 hasAuthorship W2942145362A5017029449 @default.
- W2942145362 hasAuthorship W2942145362A5045854980 @default.
- W2942145362 hasAuthorship W2942145362A5082807156 @default.
- W2942145362 hasConcept C105795698 @default.
- W2942145362 hasConcept C111919701 @default.
- W2942145362 hasConcept C119857082 @default.
- W2942145362 hasConcept C121955636 @default.
- W2942145362 hasConcept C124101348 @default.
- W2942145362 hasConcept C127413603 @default.
- W2942145362 hasConcept C132964779 @default.
- W2942145362 hasConcept C139719470 @default.
- W2942145362 hasConcept C144024400 @default.
- W2942145362 hasConcept C152877465 @default.
- W2942145362 hasConcept C154945302 @default.
- W2942145362 hasConcept C162324750 @default.
- W2942145362 hasConcept C168056786 @default.
- W2942145362 hasConcept C196083921 @default.
- W2942145362 hasConcept C199360897 @default.
- W2942145362 hasConcept C201995342 @default.
- W2942145362 hasConcept C205649164 @default.
- W2942145362 hasConcept C2778348673 @default.
- W2942145362 hasConcept C30772137 @default.
- W2942145362 hasConcept C33923547 @default.
- W2942145362 hasConcept C36289849 @default.
- W2942145362 hasConcept C41008148 @default.
- W2942145362 hasConcept C58166 @default.
- W2942145362 hasConcept C58640448 @default.
- W2942145362 hasConcept C83546350 @default.
- W2942145362 hasConcept C8880873 @default.
- W2942145362 hasConcept C96250715 @default.
- W2942145362 hasConcept C98045186 @default.
- W2942145362 hasConceptScore W2942145362C105795698 @default.
- W2942145362 hasConceptScore W2942145362C111919701 @default.
- W2942145362 hasConceptScore W2942145362C119857082 @default.
- W2942145362 hasConceptScore W2942145362C121955636 @default.
- W2942145362 hasConceptScore W2942145362C124101348 @default.
- W2942145362 hasConceptScore W2942145362C127413603 @default.
- W2942145362 hasConceptScore W2942145362C132964779 @default.
- W2942145362 hasConceptScore W2942145362C139719470 @default.
- W2942145362 hasConceptScore W2942145362C144024400 @default.
- W2942145362 hasConceptScore W2942145362C152877465 @default.
- W2942145362 hasConceptScore W2942145362C154945302 @default.
- W2942145362 hasConceptScore W2942145362C162324750 @default.
- W2942145362 hasConceptScore W2942145362C168056786 @default.
- W2942145362 hasConceptScore W2942145362C196083921 @default.
- W2942145362 hasConceptScore W2942145362C199360897 @default.
- W2942145362 hasConceptScore W2942145362C201995342 @default.
- W2942145362 hasConceptScore W2942145362C205649164 @default.
- W2942145362 hasConceptScore W2942145362C2778348673 @default.
- W2942145362 hasConceptScore W2942145362C30772137 @default.