Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942192961> ?p ?o ?g. }
- W2942192961 abstract "In this study, thermal resistance of a closed-loop oscillating heat pipe (OHP) is investigated using experimental tests and artificial intelligence methods. For this target, γFe2O3 and Fe3O4 nanoparticles are mixed with the base fluid. Also, intelligent models are developed to predict the thermal resistance of the OHP. These models are developed based on the heat input into evaporator section, the thermal conductivity of working fluids, and the ratio of the inner diameter to length of OHP. The intelligent methods are multilayer feed-forward neural network (MLFFNN), adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) type neural network. Thermal resistance of the heat pipe (as a measure of thermal performance) is considered as the target. The results showed that using the nanofluids as working fluid in the OHP decreased the thermal resistance, where this decrease for Fe3O4/water nanofluid was more than that of γFe2O3/water. The intelligent models also predicted successfully the thermal resistance of OHP with a correlation coefficient close to 1. The root-mean-square error (RMSE) for MLFFNN, ANFIS, and GMDH models was obtained as 0.0508, 0.0556, and 0.0569 (°C/W) (for the test data), respectively." @default.
- W2942192961 created "2019-05-03" @default.
- W2942192961 creator A5024148807 @default.
- W2942192961 creator A5025441266 @default.
- W2942192961 creator A5029726935 @default.
- W2942192961 creator A5036070326 @default.
- W2942192961 creator A5090826199 @default.
- W2942192961 date "2019-05-14" @default.
- W2942192961 modified "2023-10-10" @default.
- W2942192961 title "Thermal Resistance Modeling of Oscillating Heat Pipes for Nanofluids by Artificial Intelligence Approach" @default.
- W2942192961 cites W1269364743 @default.
- W2942192961 cites W1559674707 @default.
- W2942192961 cites W1969423211 @default.
- W2942192961 cites W1974778055 @default.
- W2942192961 cites W1976742890 @default.
- W2942192961 cites W1985516713 @default.
- W2942192961 cites W1996531797 @default.
- W2942192961 cites W2010291814 @default.
- W2942192961 cites W2014643605 @default.
- W2942192961 cites W2024805564 @default.
- W2942192961 cites W2032118399 @default.
- W2942192961 cites W2035051704 @default.
- W2942192961 cites W2048926722 @default.
- W2942192961 cites W2051007680 @default.
- W2942192961 cites W2055850490 @default.
- W2942192961 cites W2061506310 @default.
- W2942192961 cites W2070045907 @default.
- W2942192961 cites W2079219818 @default.
- W2942192961 cites W2081943087 @default.
- W2942192961 cites W2159728677 @default.
- W2942192961 cites W2225776000 @default.
- W2942192961 cites W2255937339 @default.
- W2942192961 cites W2275816650 @default.
- W2942192961 cites W2335434328 @default.
- W2942192961 cites W2343691835 @default.
- W2942192961 cites W2410328133 @default.
- W2942192961 cites W2470862690 @default.
- W2942192961 cites W2557836477 @default.
- W2942192961 cites W2567516455 @default.
- W2942192961 cites W2579259776 @default.
- W2942192961 cites W2586966957 @default.
- W2942192961 cites W2588590458 @default.
- W2942192961 cites W2593178317 @default.
- W2942192961 cites W2747273960 @default.
- W2942192961 cites W2761075541 @default.
- W2942192961 cites W2767314134 @default.
- W2942192961 cites W2767762012 @default.
- W2942192961 cites W2769211284 @default.
- W2942192961 cites W2778099886 @default.
- W2942192961 cites W2781426785 @default.
- W2942192961 cites W2783123111 @default.
- W2942192961 cites W2784125831 @default.
- W2942192961 cites W2790650432 @default.
- W2942192961 cites W2794564933 @default.
- W2942192961 cites W2795524415 @default.
- W2942192961 cites W2800875439 @default.
- W2942192961 cites W2801821709 @default.
- W2942192961 cites W2801972823 @default.
- W2942192961 cites W2802969205 @default.
- W2942192961 cites W2806322704 @default.
- W2942192961 doi "https://doi.org/10.1115/1.4043569" @default.
- W2942192961 hasPublicationYear "2019" @default.
- W2942192961 type Work @default.
- W2942192961 sameAs 2942192961 @default.
- W2942192961 citedByCount "17" @default.
- W2942192961 countsByYear W29421929612019 @default.
- W2942192961 countsByYear W29421929612020 @default.
- W2942192961 countsByYear W29421929612021 @default.
- W2942192961 countsByYear W29421929612022 @default.
- W2942192961 countsByYear W29421929612023 @default.
- W2942192961 crossrefType "journal-article" @default.
- W2942192961 hasAuthorship W2942192961A5024148807 @default.
- W2942192961 hasAuthorship W2942192961A5025441266 @default.
- W2942192961 hasAuthorship W2942192961A5029726935 @default.
- W2942192961 hasAuthorship W2942192961A5036070326 @default.
- W2942192961 hasAuthorship W2942192961A5090826199 @default.
- W2942192961 hasConcept C105795698 @default.
- W2942192961 hasConcept C107706546 @default.
- W2942192961 hasConcept C121332964 @default.
- W2942192961 hasConcept C127413603 @default.
- W2942192961 hasConcept C137693562 @default.
- W2942192961 hasConcept C139945424 @default.
- W2942192961 hasConcept C154945302 @default.
- W2942192961 hasConcept C159985019 @default.
- W2942192961 hasConcept C186108316 @default.
- W2942192961 hasConcept C192562407 @default.
- W2942192961 hasConcept C195975749 @default.
- W2942192961 hasConcept C204530211 @default.
- W2942192961 hasConcept C21946209 @default.
- W2942192961 hasConcept C2779301550 @default.
- W2942192961 hasConcept C33923547 @default.
- W2942192961 hasConcept C37728375 @default.
- W2942192961 hasConcept C41008148 @default.
- W2942192961 hasConcept C50517652 @default.
- W2942192961 hasConcept C50644808 @default.
- W2942192961 hasConcept C57879066 @default.
- W2942192961 hasConcept C58166 @default.
- W2942192961 hasConcept C78519656 @default.
- W2942192961 hasConcept C91311341 @default.
- W2942192961 hasConcept C97346530 @default.