Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942241877> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2942241877 endingPage "543" @default.
- W2942241877 startingPage "540" @default.
- W2942241877 abstract "Sentiment analysis is one of the trending topics at present. It has a vast scope from analysing the mood of the person based on his tweet, to predicting the stock prices. But this field is quite challenging. It is not easy to make a machine understand what exactly the person is saying. In this paper, we are going to demonstrate two different methods that can be used in sentiment analysis and its comparison. The two methods used in this paper are: i) VADER-Valence Aware Dictionary for sEntiment Reasoning ii) LSTM model (Long Short-Term Memory). VADER uses a lexicon-based approach, where the lexicon contains the intensity of all the sentiment showing words. The intensities are fetched, the sentiment score is calculated and based on this sentiment score, the review is classified as either positive or negative. We used VADER from NLTK module of python for our study. Recurrent Neural Network has proved its results in a variety of problems like speech recognition, language modelling, and translation. We used LSTM which is an extension of RNN for our study. LSTM networks are very effective for sequential data like texts because they can relate the context of the sentence very well. We preferred LSTM over RNN as LSTM supports Long-term dependency which will help us predict our reviews better. We implemented the LSTM model using keras" @default.
- W2942241877 created "2019-05-03" @default.
- W2942241877 creator A5020639277 @default.
- W2942241877 creator A5068874402 @default.
- W2942241877 creator A5074256770 @default.
- W2942241877 creator A5077633269 @default.
- W2942241877 date "2018-01-01" @default.
- W2942241877 modified "2023-09-28" @default.
- W2942241877 title "Comparison of VADER and LSTM for Sentiment Analysis" @default.
- W2942241877 hasPublicationYear "2018" @default.
- W2942241877 type Work @default.
- W2942241877 sameAs 2942241877 @default.
- W2942241877 citedByCount "0" @default.
- W2942241877 crossrefType "journal-article" @default.
- W2942241877 hasAuthorship W2942241877A5020639277 @default.
- W2942241877 hasAuthorship W2942241877A5068874402 @default.
- W2942241877 hasAuthorship W2942241877A5074256770 @default.
- W2942241877 hasAuthorship W2942241877A5077633269 @default.
- W2942241877 hasConcept C111919701 @default.
- W2942241877 hasConcept C119857082 @default.
- W2942241877 hasConcept C121332964 @default.
- W2942241877 hasConcept C133488467 @default.
- W2942241877 hasConcept C147168706 @default.
- W2942241877 hasConcept C154945302 @default.
- W2942241877 hasConcept C168900304 @default.
- W2942241877 hasConcept C204321447 @default.
- W2942241877 hasConcept C2776145597 @default.
- W2942241877 hasConcept C2777530160 @default.
- W2942241877 hasConcept C2778121359 @default.
- W2942241877 hasConcept C28490314 @default.
- W2942241877 hasConcept C41008148 @default.
- W2942241877 hasConcept C50644808 @default.
- W2942241877 hasConcept C519991488 @default.
- W2942241877 hasConcept C62520636 @default.
- W2942241877 hasConcept C66402592 @default.
- W2942241877 hasConceptScore W2942241877C111919701 @default.
- W2942241877 hasConceptScore W2942241877C119857082 @default.
- W2942241877 hasConceptScore W2942241877C121332964 @default.
- W2942241877 hasConceptScore W2942241877C133488467 @default.
- W2942241877 hasConceptScore W2942241877C147168706 @default.
- W2942241877 hasConceptScore W2942241877C154945302 @default.
- W2942241877 hasConceptScore W2942241877C168900304 @default.
- W2942241877 hasConceptScore W2942241877C204321447 @default.
- W2942241877 hasConceptScore W2942241877C2776145597 @default.
- W2942241877 hasConceptScore W2942241877C2777530160 @default.
- W2942241877 hasConceptScore W2942241877C2778121359 @default.
- W2942241877 hasConceptScore W2942241877C28490314 @default.
- W2942241877 hasConceptScore W2942241877C41008148 @default.
- W2942241877 hasConceptScore W2942241877C50644808 @default.
- W2942241877 hasConceptScore W2942241877C519991488 @default.
- W2942241877 hasConceptScore W2942241877C62520636 @default.
- W2942241877 hasConceptScore W2942241877C66402592 @default.
- W2942241877 hasIssue "6" @default.
- W2942241877 hasLocation W29422418771 @default.
- W2942241877 hasOpenAccess W2942241877 @default.
- W2942241877 hasPrimaryLocation W29422418771 @default.
- W2942241877 hasRelatedWork W2536932334 @default.
- W2942241877 hasRelatedWork W2791788833 @default.
- W2942241877 hasRelatedWork W2803280656 @default.
- W2942241877 hasRelatedWork W2809842505 @default.
- W2942241877 hasRelatedWork W2899329739 @default.
- W2942241877 hasRelatedWork W2923528470 @default.
- W2942241877 hasRelatedWork W2931976157 @default.
- W2942241877 hasRelatedWork W2955002787 @default.
- W2942241877 hasRelatedWork W2966614482 @default.
- W2942241877 hasRelatedWork W2967124430 @default.
- W2942241877 hasRelatedWork W2999095481 @default.
- W2942241877 hasRelatedWork W3004070643 @default.
- W2942241877 hasRelatedWork W3014796419 @default.
- W2942241877 hasRelatedWork W3022782624 @default.
- W2942241877 hasRelatedWork W3032634577 @default.
- W2942241877 hasRelatedWork W3038820655 @default.
- W2942241877 hasRelatedWork W3089286658 @default.
- W2942241877 hasRelatedWork W3112665949 @default.
- W2942241877 hasRelatedWork W3169600586 @default.
- W2942241877 hasRelatedWork W3197380479 @default.
- W2942241877 hasVolume "7" @default.
- W2942241877 isParatext "false" @default.
- W2942241877 isRetracted "false" @default.
- W2942241877 magId "2942241877" @default.
- W2942241877 workType "article" @default.