Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942255539> ?p ?o ?g. }
- W2942255539 endingPage "2615" @default.
- W2942255539 startingPage "2605" @default.
- W2942255539 abstract "Designing highly selective compounds to protein subtypes and developing allosteric modulators targeting them are critical considerations to both drug discovery and mechanism studies for cannabinoid receptors. It is challenging but in demand to have classifiers to identify active ligands from inactive or random compounds and distinguish allosteric modulators from orthosteric ligands. In this study, supervised machine learning classifiers were built for two subtypes of cannabinoid receptors, CB1 and CB2. Three types of features, including molecular descriptors, MACCS fingerprints, and ECFP6 fingerprints, were calculated to evaluate the compound sets from diverse aspects. Deep neural networks, as well as conventional machine learning algorithms including support vector machine, naïve Bayes, logistic regression, and ensemble learning, were applied. Their performances on the classification with different types of features were compared and discussed. According to the receiver operating characteristic curves and the calculated metrics, the advantages and drawbacks of each algorithm were investigated. The feature ranking was followed to help extract useful knowledge about critical molecular properties, substructural keys, and circular fingerprints. The extracted features will then facilitate the research on cannabinoid receptors by providing guidance on preferred properties for compound modification and novel scaffold design. Besides using conventional molecular docking studies for compound virtual screening, machine-learning-based decision-making models provide alternative options. This study can be of value to the application of machine learning in the area of drug discovery and compound development." @default.
- W2942255539 created "2019-05-03" @default.
- W2942255539 creator A5020691605 @default.
- W2942255539 creator A5028011485 @default.
- W2942255539 creator A5039020710 @default.
- W2942255539 creator A5052877430 @default.
- W2942255539 creator A5069242273 @default.
- W2942255539 creator A5082354671 @default.
- W2942255539 date "2019-04-23" @default.
- W2942255539 modified "2023-10-05" @default.
- W2942255539 title "Prediction of Orthosteric and Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers" @default.
- W2942255539 cites W1518589347 @default.
- W2942255539 cites W1819429514 @default.
- W2942255539 cites W1824285398 @default.
- W2942255539 cites W1918234784 @default.
- W2942255539 cites W1976768202 @default.
- W2942255539 cites W1977503005 @default.
- W2942255539 cites W1979707551 @default.
- W2942255539 cites W1979900513 @default.
- W2942255539 cites W1980801609 @default.
- W2942255539 cites W1988564488 @default.
- W2942255539 cites W1988790447 @default.
- W2942255539 cites W1990916210 @default.
- W2942255539 cites W2001740183 @default.
- W2942255539 cites W2001924054 @default.
- W2942255539 cites W2003736358 @default.
- W2942255539 cites W2008119868 @default.
- W2942255539 cites W2011301426 @default.
- W2942255539 cites W2021205924 @default.
- W2942255539 cites W2022696445 @default.
- W2942255539 cites W2033930665 @default.
- W2942255539 cites W2048249572 @default.
- W2942255539 cites W2076063813 @default.
- W2942255539 cites W2081709350 @default.
- W2942255539 cites W2089465877 @default.
- W2942255539 cites W2098889731 @default.
- W2942255539 cites W2112074033 @default.
- W2942255539 cites W2125104309 @default.
- W2942255539 cites W2125283600 @default.
- W2942255539 cites W2135015648 @default.
- W2942255539 cites W2149183149 @default.
- W2942255539 cites W2154249927 @default.
- W2942255539 cites W2175309784 @default.
- W2942255539 cites W2176516200 @default.
- W2942255539 cites W2229709747 @default.
- W2942255539 cites W2284281992 @default.
- W2942255539 cites W2498119267 @default.
- W2942255539 cites W2558999090 @default.
- W2942255539 cites W2614588923 @default.
- W2942255539 cites W2619904744 @default.
- W2942255539 cites W2749469617 @default.
- W2942255539 cites W2766761250 @default.
- W2942255539 cites W2795068716 @default.
- W2942255539 cites W2797324131 @default.
- W2942255539 cites W2803587386 @default.
- W2942255539 cites W2848526744 @default.
- W2942255539 cites W2889810589 @default.
- W2942255539 cites W2911964244 @default.
- W2942255539 doi "https://doi.org/10.1021/acs.molpharmaceut.9b00182" @default.
- W2942255539 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6732211" @default.
- W2942255539 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31013097" @default.
- W2942255539 hasPublicationYear "2019" @default.
- W2942255539 type Work @default.
- W2942255539 sameAs 2942255539 @default.
- W2942255539 citedByCount "30" @default.
- W2942255539 countsByYear W29422555392019 @default.
- W2942255539 countsByYear W29422555392020 @default.
- W2942255539 countsByYear W29422555392021 @default.
- W2942255539 countsByYear W29422555392022 @default.
- W2942255539 countsByYear W29422555392023 @default.
- W2942255539 crossrefType "journal-article" @default.
- W2942255539 hasAuthorship W2942255539A5020691605 @default.
- W2942255539 hasAuthorship W2942255539A5028011485 @default.
- W2942255539 hasAuthorship W2942255539A5039020710 @default.
- W2942255539 hasAuthorship W2942255539A5052877430 @default.
- W2942255539 hasAuthorship W2942255539A5069242273 @default.
- W2942255539 hasAuthorship W2942255539A5082354671 @default.
- W2942255539 hasBestOaLocation W29422555392 @default.
- W2942255539 hasConcept C103697762 @default.
- W2942255539 hasConcept C119857082 @default.
- W2942255539 hasConcept C12267149 @default.
- W2942255539 hasConcept C148001335 @default.
- W2942255539 hasConcept C154945302 @default.
- W2942255539 hasConcept C164126121 @default.
- W2942255539 hasConcept C166342909 @default.
- W2942255539 hasConcept C169258074 @default.
- W2942255539 hasConcept C170493617 @default.
- W2942255539 hasConcept C185592680 @default.
- W2942255539 hasConcept C2778938600 @default.
- W2942255539 hasConcept C41008148 @default.
- W2942255539 hasConcept C52001869 @default.
- W2942255539 hasConcept C55493867 @default.
- W2942255539 hasConcept C60644358 @default.
- W2942255539 hasConcept C74187038 @default.
- W2942255539 hasConcept C86803240 @default.
- W2942255539 hasConcept C93248783 @default.
- W2942255539 hasConceptScore W2942255539C103697762 @default.
- W2942255539 hasConceptScore W2942255539C119857082 @default.