Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942256847> ?p ?o ?g. }
- W2942256847 abstract "Quantifying or labeling the sample type with high quality is a challenging task, which is a key step for understanding complex diseases. Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. Here we propose an effective data integration framework named as HCI (High-order Correlation Integration), which takes an advantage of high-order correlation matrix incorporated with pattern fusion analysis (PFA), to realize high-dimensional data feature extraction. On the one hand, the high-order Pearson's correlation coefficient can highlight the latent patterns underlying noisy input datasets and thus improve the accuracy and robustness of the algorithms currently available for sample clustering. On the other hand, the PFA can identify intrinsic sample patterns efficiently from different input matrices by optimally adjusting the signal effects. To validate the effectiveness of our new method, we firstly applied HCI on four single-cell RNA-seq datasets to distinguish the cell types, and we found that HCI is capable of identifying the prior-known cell types of single-cell samples from scRNA-seq data with higher accuracy and robustness than other methods under different conditions. Secondly, we also integrated heterogonous omics data from TCGA datasets and GEO datasets including bulk RNA-seq data, which outperformed the other methods at identifying distinct cancer subtypes. Within an additional case study, we also constructed the mRNA-miRNA regulatory network of colorectal cancer based on the feature weight estimated from HCI, where the differentially expressed mRNAs and miRNAs were significantly enriched in well-known functional sets of colorectal cancer, such as KEGG pathways and IPA disease annotations. All these results supported that HCI has extensive flexibility and applicability on sample clustering with different types and organizations of RNA-seq data." @default.
- W2942256847 created "2019-05-03" @default.
- W2942256847 creator A5012283696 @default.
- W2942256847 creator A5026321844 @default.
- W2942256847 creator A5033425255 @default.
- W2942256847 date "2019-04-26" @default.
- W2942256847 modified "2023-10-16" @default.
- W2942256847 title "High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis" @default.
- W2942256847 cites W1580018887 @default.
- W2942256847 cites W1598942597 @default.
- W2942256847 cites W1813068103 @default.
- W2942256847 cites W1973651601 @default.
- W2942256847 cites W1978034558 @default.
- W2942256847 cites W1987219048 @default.
- W2942256847 cites W1991082348 @default.
- W2942256847 cites W1998031633 @default.
- W2942256847 cites W2003571703 @default.
- W2942256847 cites W2005129098 @default.
- W2942256847 cites W2007439698 @default.
- W2942256847 cites W2023461603 @default.
- W2942256847 cites W2023887100 @default.
- W2942256847 cites W2028829513 @default.
- W2942256847 cites W2030017878 @default.
- W2942256847 cites W2035471593 @default.
- W2942256847 cites W2043929834 @default.
- W2942256847 cites W2051658465 @default.
- W2942256847 cites W2053522428 @default.
- W2942256847 cites W2071010503 @default.
- W2942256847 cites W2081076969 @default.
- W2942256847 cites W2086277161 @default.
- W2942256847 cites W2102212449 @default.
- W2942256847 cites W2108668859 @default.
- W2942256847 cites W2109761160 @default.
- W2942256847 cites W2111208057 @default.
- W2942256847 cites W2117968640 @default.
- W2942256847 cites W2125523949 @default.
- W2942256847 cites W2125747689 @default.
- W2942256847 cites W2132946679 @default.
- W2942256847 cites W2140258573 @default.
- W2942256847 cites W2149453908 @default.
- W2942256847 cites W2150593711 @default.
- W2942256847 cites W2153195747 @default.
- W2942256847 cites W2159547203 @default.
- W2942256847 cites W2238290008 @default.
- W2942256847 cites W2254019636 @default.
- W2942256847 cites W2259938310 @default.
- W2942256847 cites W2337819340 @default.
- W2942256847 cites W2339239983 @default.
- W2942256847 cites W2409242998 @default.
- W2942256847 cites W2463988862 @default.
- W2942256847 cites W2508622936 @default.
- W2942256847 cites W2523419694 @default.
- W2942256847 cites W2555892463 @default.
- W2942256847 cites W2598326928 @default.
- W2942256847 cites W2631063318 @default.
- W2942256847 cites W2733397209 @default.
- W2942256847 cites W2752829361 @default.
- W2942256847 cites W2784142616 @default.
- W2942256847 cites W2785077524 @default.
- W2942256847 cites W2790335960 @default.
- W2942256847 cites W2796170779 @default.
- W2942256847 cites W2800948866 @default.
- W2942256847 cites W2804460316 @default.
- W2942256847 cites W2806757506 @default.
- W2942256847 cites W2838125288 @default.
- W2942256847 cites W2899397884 @default.
- W2942256847 cites W2899657781 @default.
- W2942256847 cites W2907471989 @default.
- W2942256847 cites W2921554869 @default.
- W2942256847 cites W2949329924 @default.
- W2942256847 cites W2950222828 @default.
- W2942256847 cites W2952303649 @default.
- W2942256847 cites W4235169531 @default.
- W2942256847 cites W4236706032 @default.
- W2942256847 doi "https://doi.org/10.3389/fgene.2019.00371" @default.
- W2942256847 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6497731" @default.
- W2942256847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31080457" @default.
- W2942256847 hasPublicationYear "2019" @default.
- W2942256847 type Work @default.
- W2942256847 sameAs 2942256847 @default.
- W2942256847 citedByCount "9" @default.
- W2942256847 countsByYear W29422568472019 @default.
- W2942256847 countsByYear W29422568472020 @default.
- W2942256847 countsByYear W29422568472021 @default.
- W2942256847 countsByYear W29422568472022 @default.
- W2942256847 crossrefType "journal-article" @default.
- W2942256847 hasAuthorship W2942256847A5012283696 @default.
- W2942256847 hasAuthorship W2942256847A5026321844 @default.
- W2942256847 hasAuthorship W2942256847A5033425255 @default.
- W2942256847 hasBestOaLocation W29422568471 @default.
- W2942256847 hasConcept C104317684 @default.
- W2942256847 hasConcept C105795698 @default.
- W2942256847 hasConcept C117220453 @default.
- W2942256847 hasConcept C119857082 @default.
- W2942256847 hasConcept C124101348 @default.
- W2942256847 hasConcept C129848803 @default.
- W2942256847 hasConcept C153180895 @default.
- W2942256847 hasConcept C153874254 @default.
- W2942256847 hasConcept C154945302 @default.
- W2942256847 hasConcept C185592680 @default.