Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942257425> ?p ?o ?g. }
- W2942257425 endingPage "689" @default.
- W2942257425 startingPage "689" @default.
- W2942257425 abstract "The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth." @default.
- W2942257425 created "2019-05-03" @default.
- W2942257425 creator A5011911974 @default.
- W2942257425 creator A5018545870 @default.
- W2942257425 creator A5043610610 @default.
- W2942257425 creator A5053403248 @default.
- W2942257425 date "2019-03-22" @default.
- W2942257425 modified "2023-10-11" @default.
- W2942257425 title "Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases" @default.
- W2942257425 cites W1087651761 @default.
- W2942257425 cites W1685317713 @default.
- W2942257425 cites W1982715432 @default.
- W2942257425 cites W1985555755 @default.
- W2942257425 cites W1990660785 @default.
- W2942257425 cites W1993292319 @default.
- W2942257425 cites W1997403492 @default.
- W2942257425 cites W2011762961 @default.
- W2942257425 cites W2013018318 @default.
- W2942257425 cites W2013168618 @default.
- W2942257425 cites W2020095931 @default.
- W2942257425 cites W2026200869 @default.
- W2942257425 cites W2029473420 @default.
- W2942257425 cites W2034900176 @default.
- W2942257425 cites W2036003376 @default.
- W2942257425 cites W2037212214 @default.
- W2942257425 cites W2047145060 @default.
- W2942257425 cites W2060426168 @default.
- W2942257425 cites W2065032274 @default.
- W2942257425 cites W2066724429 @default.
- W2942257425 cites W2072093516 @default.
- W2942257425 cites W2073696851 @default.
- W2942257425 cites W2086920909 @default.
- W2942257425 cites W2088405902 @default.
- W2942257425 cites W2106811285 @default.
- W2942257425 cites W2108806738 @default.
- W2942257425 cites W2113410727 @default.
- W2942257425 cites W2116635928 @default.
- W2942257425 cites W2125397877 @default.
- W2942257425 cites W2128438912 @default.
- W2942257425 cites W2128622098 @default.
- W2942257425 cites W2148341336 @default.
- W2942257425 cites W2149324144 @default.
- W2942257425 cites W2149813070 @default.
- W2942257425 cites W2157334214 @default.
- W2942257425 cites W2161527913 @default.
- W2942257425 cites W2166309838 @default.
- W2942257425 cites W2166532746 @default.
- W2942257425 cites W2167248655 @default.
- W2942257425 cites W2169627224 @default.
- W2942257425 cites W2206749338 @default.
- W2942257425 cites W2319245025 @default.
- W2942257425 cites W2603028033 @default.
- W2942257425 cites W2616508689 @default.
- W2942257425 cites W2795121812 @default.
- W2942257425 cites W2906006095 @default.
- W2942257425 doi "https://doi.org/10.3390/rs11060689" @default.
- W2942257425 hasPublicationYear "2019" @default.
- W2942257425 type Work @default.
- W2942257425 sameAs 2942257425 @default.
- W2942257425 citedByCount "40" @default.
- W2942257425 countsByYear W29422574252019 @default.
- W2942257425 countsByYear W29422574252020 @default.
- W2942257425 countsByYear W29422574252021 @default.
- W2942257425 countsByYear W29422574252022 @default.
- W2942257425 countsByYear W29422574252023 @default.
- W2942257425 crossrefType "journal-article" @default.
- W2942257425 hasAuthorship W2942257425A5011911974 @default.
- W2942257425 hasAuthorship W2942257425A5018545870 @default.
- W2942257425 hasAuthorship W2942257425A5043610610 @default.
- W2942257425 hasAuthorship W2942257425A5053403248 @default.
- W2942257425 hasBestOaLocation W29422574251 @default.
- W2942257425 hasConcept C101000010 @default.
- W2942257425 hasConcept C121332964 @default.
- W2942257425 hasConcept C127313418 @default.
- W2942257425 hasConcept C1276947 @default.
- W2942257425 hasConcept C142724271 @default.
- W2942257425 hasConcept C1549246 @default.
- W2942257425 hasConcept C18903297 @default.
- W2942257425 hasConcept C19269812 @default.
- W2942257425 hasConcept C205649164 @default.
- W2942257425 hasConcept C25989453 @default.
- W2942257425 hasConcept C2776133958 @default.
- W2942257425 hasConcept C2777007095 @default.
- W2942257425 hasConcept C2780376076 @default.
- W2942257425 hasConcept C33923547 @default.
- W2942257425 hasConcept C39432304 @default.
- W2942257425 hasConcept C62649853 @default.
- W2942257425 hasConcept C71924100 @default.
- W2942257425 hasConcept C78869512 @default.
- W2942257425 hasConcept C86803240 @default.
- W2942257425 hasConcept C91586092 @default.
- W2942257425 hasConceptScore W2942257425C101000010 @default.
- W2942257425 hasConceptScore W2942257425C121332964 @default.
- W2942257425 hasConceptScore W2942257425C127313418 @default.
- W2942257425 hasConceptScore W2942257425C1276947 @default.
- W2942257425 hasConceptScore W2942257425C142724271 @default.
- W2942257425 hasConceptScore W2942257425C1549246 @default.
- W2942257425 hasConceptScore W2942257425C18903297 @default.