Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942275886> ?p ?o ?g. }
- W2942275886 endingPage "80" @default.
- W2942275886 startingPage "69" @default.
- W2942275886 abstract "Quantitative assessment of subretinal fluid in spectral domain optical coherence tomography (SD-OCT) images is crucial for the diagnosis of central serous chorioretinopathy. For the subretinal fluid segmentation, the traditional methods need to segment retinal layers and then segment subretinal fluid. The layer segmentation has a high influence on subretinal fluid segmentation, so we aim to develop a deep learning model to segment subretinal fluid automatically without layer segmentation. In this paper, we propose a novel image-to-image double-branched and area-constraint fully convolutional networks (DA-FCN) for segmenting subretinal fluid in SD-OCT images. Firstly, the dataset is extended by mirroring image, which helps to overcome the over-fitting problem in the training stage. Then, double-branched structures are designed to learn the shallow coarse and deep representations from the SD-OCT images. DA-FCN model is directly trained using the image and corresponding pixel-based ground truth. Finally, we introduce a novel supervision mechanism by jointing the area loss LA with the softmax loss LS to learn more representative features. The testing dataset with 52 SD-OCT volumes from 35 eyes of 35 patients is used for the evaluation of the proposed algorithm based on the cross-validation method. For the three criterions, including the true positive volume fraction, dice similarity coefficient, and positive predicative value, our method can obtain the results of (1) 94.3, 95.3, and 96.4 for dataset 1; (2) 97.3, 95.3, and 93.4 for dataset 2; (3) 93.0, 92.8, and 92.8 for dataset 3; (4) 89.7, 90.1, and 92.6 for dataset 4. In this work, we propose a novel fully convolutional network for the automatic segmentation of the subretinal fluid. By constructing the double branched structures and area constraint term, our method shows higher segmentation accuracy without layer segmentation compared with other methods." @default.
- W2942275886 created "2019-05-03" @default.
- W2942275886 creator A5020031925 @default.
- W2942275886 creator A5034946941 @default.
- W2942275886 creator A5036479222 @default.
- W2942275886 creator A5044758681 @default.
- W2942275886 creator A5049980642 @default.
- W2942275886 creator A5050474631 @default.
- W2942275886 creator A5057303331 @default.
- W2942275886 creator A5072281002 @default.
- W2942275886 creator A5073010231 @default.
- W2942275886 creator A5079884578 @default.
- W2942275886 date "2019-07-01" @default.
- W2942275886 modified "2023-10-17" @default.
- W2942275886 title "Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images" @default.
- W2942275886 cites W1979102712 @default.
- W2942275886 cites W1993893886 @default.
- W2942275886 cites W2057600571 @default.
- W2942275886 cites W2057842522 @default.
- W2942275886 cites W2071041097 @default.
- W2942275886 cites W2072086181 @default.
- W2942275886 cites W2086295185 @default.
- W2942275886 cites W2101211008 @default.
- W2942275886 cites W2115527343 @default.
- W2942275886 cites W2122333898 @default.
- W2942275886 cites W2134542952 @default.
- W2942275886 cites W2284198383 @default.
- W2942275886 cites W2300511734 @default.
- W2942275886 cites W2303778079 @default.
- W2942275886 cites W2319638030 @default.
- W2942275886 cites W2321520181 @default.
- W2942275886 cites W2333049522 @default.
- W2942275886 cites W2337570847 @default.
- W2942275886 cites W2343172899 @default.
- W2942275886 cites W2473838373 @default.
- W2942275886 cites W2592517646 @default.
- W2942275886 cites W2606000143 @default.
- W2942275886 cites W2608854843 @default.
- W2942275886 cites W2753922518 @default.
- W2942275886 cites W2792836735 @default.
- W2942275886 cites W2949122205 @default.
- W2942275886 cites W2963334029 @default.
- W2942275886 doi "https://doi.org/10.1016/j.cmpb.2019.04.027" @default.
- W2942275886 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31200913" @default.
- W2942275886 hasPublicationYear "2019" @default.
- W2942275886 type Work @default.
- W2942275886 sameAs 2942275886 @default.
- W2942275886 citedByCount "30" @default.
- W2942275886 countsByYear W29422758862020 @default.
- W2942275886 countsByYear W29422758862021 @default.
- W2942275886 countsByYear W29422758862022 @default.
- W2942275886 countsByYear W29422758862023 @default.
- W2942275886 crossrefType "journal-article" @default.
- W2942275886 hasAuthorship W2942275886A5020031925 @default.
- W2942275886 hasAuthorship W2942275886A5034946941 @default.
- W2942275886 hasAuthorship W2942275886A5036479222 @default.
- W2942275886 hasAuthorship W2942275886A5044758681 @default.
- W2942275886 hasAuthorship W2942275886A5049980642 @default.
- W2942275886 hasAuthorship W2942275886A5050474631 @default.
- W2942275886 hasAuthorship W2942275886A5057303331 @default.
- W2942275886 hasAuthorship W2942275886A5072281002 @default.
- W2942275886 hasAuthorship W2942275886A5073010231 @default.
- W2942275886 hasAuthorship W2942275886A5079884578 @default.
- W2942275886 hasConcept C108583219 @default.
- W2942275886 hasConcept C118487528 @default.
- W2942275886 hasConcept C124504099 @default.
- W2942275886 hasConcept C146849305 @default.
- W2942275886 hasConcept C153180895 @default.
- W2942275886 hasConcept C154945302 @default.
- W2942275886 hasConcept C160633673 @default.
- W2942275886 hasConcept C163892561 @default.
- W2942275886 hasConcept C188441871 @default.
- W2942275886 hasConcept C2778818243 @default.
- W2942275886 hasConcept C31972630 @default.
- W2942275886 hasConcept C41008148 @default.
- W2942275886 hasConcept C71924100 @default.
- W2942275886 hasConcept C89600930 @default.
- W2942275886 hasConceptScore W2942275886C108583219 @default.
- W2942275886 hasConceptScore W2942275886C118487528 @default.
- W2942275886 hasConceptScore W2942275886C124504099 @default.
- W2942275886 hasConceptScore W2942275886C146849305 @default.
- W2942275886 hasConceptScore W2942275886C153180895 @default.
- W2942275886 hasConceptScore W2942275886C154945302 @default.
- W2942275886 hasConceptScore W2942275886C160633673 @default.
- W2942275886 hasConceptScore W2942275886C163892561 @default.
- W2942275886 hasConceptScore W2942275886C188441871 @default.
- W2942275886 hasConceptScore W2942275886C2778818243 @default.
- W2942275886 hasConceptScore W2942275886C31972630 @default.
- W2942275886 hasConceptScore W2942275886C41008148 @default.
- W2942275886 hasConceptScore W2942275886C71924100 @default.
- W2942275886 hasConceptScore W2942275886C89600930 @default.
- W2942275886 hasFunder F4320321001 @default.
- W2942275886 hasFunder F4320321543 @default.
- W2942275886 hasLocation W29422758861 @default.
- W2942275886 hasLocation W29422758862 @default.
- W2942275886 hasOpenAccess W2942275886 @default.
- W2942275886 hasPrimaryLocation W29422758861 @default.
- W2942275886 hasRelatedWork W158826679 @default.