Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942334654> ?p ?o ?g. }
- W2942334654 abstract "Background: During the last decades a number of genome-wide association studies (GWASs) has identified numerous single nucleotide polymorphisms (SNPs) associated with different complex diseases. However, associations reported in one population are often conflicting and did not replicate when studied in other populations. One of the reasons could be that most GWAS employ a case-control design in one or a limited number of populations, but little attention was paid to the global distribution of disease-associated alleles across different populations. Moreover, the majority of GWAS have been performed on selected European, African, and Chinese populations and the considerable number of populations remains understudied. Aim: We have investigated the global distribution of so far discovered disease-associated SNPs across worldwide populations of different ancestry and geographical regions with a special focus on the understudied population of Armenians. Data and Methods: We have used genotyping data from the Human Genome Diversity Project and of Armenian population and combined them with disease-associated SNP data taken from public repositories leading to a final dataset of 44,234 markers. Their frequency distribution across 1039 individuals from 53 populations was analyzed using self-organizing maps (SOM) machine learning. Our SOM portrayal approach reduces data dimensionality, clusters SNPs with similar frequency profiles and provides two-dimensional data images which enable visual evaluation of disease-associated SNPs landscapes among human populations. Results: We find that populations from Africa, Oceania, and America show specific patterns of minor allele frequencies of disease-associated SNPs, while populations from Europe, Middle East, Central South Asia, and Armenia mostly share similar patterns. Importantly, different sets of SNPs associated with common polygenic diseases, such as cancer, diabetes, neurodegeneration in populations from different geographic regions. Armenians are characterized by a set of SNPs that are distinct from other populations from the neighboring geographical regions. Conclusion: Genetic associations of diseases considerably vary across populations which necessitates health-related genotyping efforts especially for so far understudied populations. SOM portrayal represents novel promising methods in population genetic research with special strength in visualization-based comparison of SNP data." @default.
- W2942334654 created "2019-05-03" @default.
- W2942334654 creator A5008460820 @default.
- W2942334654 creator A5045754538 @default.
- W2942334654 creator A5052114174 @default.
- W2942334654 creator A5060083679 @default.
- W2942334654 creator A5068480255 @default.
- W2942334654 creator A5077178223 @default.
- W2942334654 date "2019-04-26" @default.
- W2942334654 modified "2023-10-16" @default.
- W2942334654 title "Population Levels Assessment of the Distribution of Disease-Associated Variants With Emphasis on Armenians – A Machine Learning Approach" @default.
- W2942334654 cites W1040906197 @default.
- W2942334654 cites W1532875735 @default.
- W2942334654 cites W1595057305 @default.
- W2942334654 cites W1755551634 @default.
- W2942334654 cites W1768775693 @default.
- W2942334654 cites W1797610940 @default.
- W2942334654 cites W1980599797 @default.
- W2942334654 cites W1989619485 @default.
- W2942334654 cites W1996405340 @default.
- W2942334654 cites W1998157341 @default.
- W2942334654 cites W1998641738 @default.
- W2942334654 cites W1998920465 @default.
- W2942334654 cites W2037600975 @default.
- W2942334654 cites W2040443719 @default.
- W2942334654 cites W2041215083 @default.
- W2942334654 cites W2051569221 @default.
- W2942334654 cites W2067329349 @default.
- W2942334654 cites W2076048536 @default.
- W2942334654 cites W2080105198 @default.
- W2942334654 cites W2087546077 @default.
- W2942334654 cites W2091390191 @default.
- W2942334654 cites W2101961436 @default.
- W2942334654 cites W2106631668 @default.
- W2942334654 cites W2110343195 @default.
- W2942334654 cites W2112948089 @default.
- W2942334654 cites W2115599501 @default.
- W2942334654 cites W2124695871 @default.
- W2942334654 cites W2129559300 @default.
- W2942334654 cites W2136939537 @default.
- W2942334654 cites W2139696807 @default.
- W2942334654 cites W2159092541 @default.
- W2942334654 cites W2160187477 @default.
- W2942334654 cites W2160859576 @default.
- W2942334654 cites W2161159397 @default.
- W2942334654 cites W2162372514 @default.
- W2942334654 cites W2162491183 @default.
- W2942334654 cites W2211384487 @default.
- W2942334654 cites W2214387093 @default.
- W2942334654 cites W2273953524 @default.
- W2942334654 cites W2318104653 @default.
- W2942334654 cites W2318809395 @default.
- W2942334654 cites W2405825843 @default.
- W2942334654 cites W2473166635 @default.
- W2942334654 cites W2495191183 @default.
- W2942334654 cites W2559837976 @default.
- W2942334654 cites W2560322684 @default.
- W2942334654 cites W2573286650 @default.
- W2942334654 cites W2611696724 @default.
- W2942334654 cites W2737744488 @default.
- W2942334654 cites W2762272043 @default.
- W2942334654 cites W2765739143 @default.
- W2942334654 cites W2766258897 @default.
- W2942334654 cites W2794214511 @default.
- W2942334654 cites W2807305094 @default.
- W2942334654 cites W2883104035 @default.
- W2942334654 cites W2886907366 @default.
- W2942334654 cites W2898134536 @default.
- W2942334654 cites W2942334654 @default.
- W2942334654 cites W2991564522 @default.
- W2942334654 doi "https://doi.org/10.3389/fgene.2019.00394" @default.
- W2942334654 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6498285" @default.
- W2942334654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31105750" @default.
- W2942334654 hasPublicationYear "2019" @default.
- W2942334654 type Work @default.
- W2942334654 sameAs 2942334654 @default.
- W2942334654 citedByCount "9" @default.
- W2942334654 countsByYear W29423346542019 @default.
- W2942334654 countsByYear W29423346542020 @default.
- W2942334654 countsByYear W29423346542021 @default.
- W2942334654 countsByYear W29423346542022 @default.
- W2942334654 countsByYear W29423346542023 @default.
- W2942334654 crossrefType "journal-article" @default.
- W2942334654 hasAuthorship W2942334654A5008460820 @default.
- W2942334654 hasAuthorship W2942334654A5045754538 @default.
- W2942334654 hasAuthorship W2942334654A5052114174 @default.
- W2942334654 hasAuthorship W2942334654A5060083679 @default.
- W2942334654 hasAuthorship W2942334654A5068480255 @default.
- W2942334654 hasAuthorship W2942334654A5077178223 @default.
- W2942334654 hasBestOaLocation W29423346541 @default.
- W2942334654 hasConcept C104317684 @default.
- W2942334654 hasConcept C106208931 @default.
- W2942334654 hasConcept C135763542 @default.
- W2942334654 hasConcept C137132547 @default.
- W2942334654 hasConcept C142724271 @default.
- W2942334654 hasConcept C144024400 @default.
- W2942334654 hasConcept C149923435 @default.
- W2942334654 hasConcept C153209595 @default.
- W2942334654 hasConcept C157410074 @default.
- W2942334654 hasConcept C163691529 @default.