Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942381161> ?p ?o ?g. }
- W2942381161 endingPage "367" @default.
- W2942381161 startingPage "362" @default.
- W2942381161 abstract "Purpose of review In this review article, we describe the development and application of machine-learning models in the field of rheumatology to improve the detection and diagnosis rates of underdiagnosed rheumatologic conditions, such as ankylosing spondylitis and axial spondyloarthritis (axSpA). Recent findings In an attempt to aid in the earlier diagnosis of axSpA, we developed machine-learning models to predict a diagnosis of ankylosing spondylitis and axSpA using administrative claims and electronic medical record data. Machine-learning algorithms based on medical claims data predicted the diagnosis of ankylosing spondylitis better than a model developed based on clinical characteristics of ankylosing spondylitis. With additional clinical data, machine-learning algorithms developed using electronic medical records identified patients with axSpA with 82.6–91.8% accuracy. These two algorithms have helped us understand potential opportunities and challenges associated with each data set and with different analytic approaches. Efforts to refine and validate these machine-learning models are ongoing. Summary We discuss the challenges and benefits of machine-learning models in healthcare, along with potential opportunities for its application in the field of rheumatology, particularly in the early diagnosis of axSpA and ankylosing spondylitis." @default.
- W2942381161 created "2019-05-03" @default.
- W2942381161 creator A5007703062 @default.
- W2942381161 creator A5033565189 @default.
- W2942381161 creator A5068958391 @default.
- W2942381161 creator A5078697093 @default.
- W2942381161 date "2019-07-01" @default.
- W2942381161 modified "2023-10-13" @default.
- W2942381161 title "Application of machine learning in the diagnosis of axial spondyloarthritis" @default.
- W2942381161 cites W1485503078 @default.
- W2942381161 cites W1592412428 @default.
- W2942381161 cites W1621490964 @default.
- W2942381161 cites W1778127761 @default.
- W2942381161 cites W1908778477 @default.
- W2942381161 cites W1933575742 @default.
- W2942381161 cites W1976632804 @default.
- W2942381161 cites W2014823604 @default.
- W2942381161 cites W2022920393 @default.
- W2942381161 cites W2040252470 @default.
- W2942381161 cites W2041594495 @default.
- W2942381161 cites W2046609411 @default.
- W2942381161 cites W2052595749 @default.
- W2942381161 cites W2062092608 @default.
- W2942381161 cites W2072739702 @default.
- W2942381161 cites W2073038397 @default.
- W2942381161 cites W2078249983 @default.
- W2942381161 cites W2098313103 @default.
- W2942381161 cites W2099909375 @default.
- W2942381161 cites W2100930807 @default.
- W2942381161 cites W2106610034 @default.
- W2942381161 cites W2109172918 @default.
- W2942381161 cites W2119361626 @default.
- W2942381161 cites W2121399461 @default.
- W2942381161 cites W2124239698 @default.
- W2942381161 cites W2134475177 @default.
- W2942381161 cites W2135789918 @default.
- W2942381161 cites W2155990621 @default.
- W2942381161 cites W2156605473 @default.
- W2942381161 cites W2157446613 @default.
- W2942381161 cites W2157784421 @default.
- W2942381161 cites W2165895019 @default.
- W2942381161 cites W2261724355 @default.
- W2942381161 cites W2304439923 @default.
- W2942381161 cites W2341280059 @default.
- W2942381161 cites W2345744153 @default.
- W2942381161 cites W2398164850 @default.
- W2942381161 cites W2435221055 @default.
- W2942381161 cites W2474510828 @default.
- W2942381161 cites W2495762118 @default.
- W2942381161 cites W2550757803 @default.
- W2942381161 cites W2557738935 @default.
- W2942381161 cites W2734845466 @default.
- W2942381161 cites W2743305307 @default.
- W2942381161 cites W2744961260 @default.
- W2942381161 cites W2747987134 @default.
- W2942381161 cites W2749244234 @default.
- W2942381161 cites W2760274177 @default.
- W2942381161 cites W2761123249 @default.
- W2942381161 cites W2763753716 @default.
- W2942381161 cites W2769207533 @default.
- W2942381161 cites W2770625585 @default.
- W2942381161 cites W2773031537 @default.
- W2942381161 cites W2780771183 @default.
- W2942381161 cites W2785731967 @default.
- W2942381161 cites W2791732570 @default.
- W2942381161 cites W2792053456 @default.
- W2942381161 cites W2794847179 @default.
- W2942381161 cites W2804649465 @default.
- W2942381161 cites W2883452932 @default.
- W2942381161 cites W2887355428 @default.
- W2942381161 cites W2888109941 @default.
- W2942381161 cites W2891787808 @default.
- W2942381161 cites W2901646320 @default.
- W2942381161 cites W2908272298 @default.
- W2942381161 cites W2908629915 @default.
- W2942381161 cites W2922006080 @default.
- W2942381161 cites W2942637757 @default.
- W2942381161 cites W2943611601 @default.
- W2942381161 cites W4210974969 @default.
- W2942381161 cites W4232067663 @default.
- W2942381161 doi "https://doi.org/10.1097/bor.0000000000000612" @default.
- W2942381161 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6553337" @default.
- W2942381161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31033569" @default.
- W2942381161 hasPublicationYear "2019" @default.
- W2942381161 type Work @default.
- W2942381161 sameAs 2942381161 @default.
- W2942381161 citedByCount "20" @default.
- W2942381161 countsByYear W29423811612019 @default.
- W2942381161 countsByYear W29423811612020 @default.
- W2942381161 countsByYear W29423811612021 @default.
- W2942381161 countsByYear W29423811612022 @default.
- W2942381161 countsByYear W29423811612023 @default.
- W2942381161 crossrefType "journal-article" @default.
- W2942381161 hasAuthorship W2942381161A5007703062 @default.
- W2942381161 hasAuthorship W2942381161A5033565189 @default.
- W2942381161 hasAuthorship W2942381161A5068958391 @default.
- W2942381161 hasAuthorship W2942381161A5078697093 @default.
- W2942381161 hasBestOaLocation W29423811611 @default.