Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942471690> ?p ?o ?g. }
- W2942471690 abstract "Machine learning methods for computational imaging require uncertainty estimation to be reliable in real settings. While Bayesian models offer a computationally tractable way of recovering uncertainty, they need large data volumes to be trained, which in imaging applications implicates prohibitively expensive collections with specific imaging instruments. This paper introduces a novel framework to train variational inference for inverse problems exploiting in combination few experimentally collected data, domain expertise and existing image data sets. In such a way, Bayesian machine learning models can solve imaging inverse problems with minimal data collection efforts. Extensive simulated experiments show the advantages of the proposed framework. The approach is then applied to two real experimental optics settings: holographic image reconstruction and imaging through highly scattering media. In both settings, state of the art reconstructions are achieved with little collection of training data." @default.
- W2942471690 created "2019-05-03" @default.
- W2942471690 creator A5005343200 @default.
- W2942471690 creator A5017068912 @default.
- W2942471690 creator A5070918132 @default.
- W2942471690 creator A5082496896 @default.
- W2942471690 creator A5083750918 @default.
- W2942471690 date "2019-04-12" @default.
- W2942471690 modified "2023-09-27" @default.
- W2942471690 title "Variational Inference for Computational Imaging Inverse Problems" @default.
- W2942471690 cites W1484412996 @default.
- W2942471690 cites W1514248469 @default.
- W2942471690 cites W1834627138 @default.
- W2942471690 cites W1915360731 @default.
- W2942471690 cites W1936062343 @default.
- W2942471690 cites W1959608418 @default.
- W2942471690 cites W1968994649 @default.
- W2942471690 cites W1973333099 @default.
- W2942471690 cites W1976938290 @default.
- W2942471690 cites W2003657584 @default.
- W2942471690 cites W2007593159 @default.
- W2942471690 cites W2009783860 @default.
- W2942471690 cites W2011161612 @default.
- W2942471690 cites W2011181254 @default.
- W2942471690 cites W2015911499 @default.
- W2942471690 cites W2022072902 @default.
- W2942471690 cites W2027319489 @default.
- W2942471690 cites W2041865295 @default.
- W2942471690 cites W2042770989 @default.
- W2942471690 cites W2049882758 @default.
- W2942471690 cites W2057853719 @default.
- W2942471690 cites W2071099763 @default.
- W2942471690 cites W2071284784 @default.
- W2942471690 cites W2079756223 @default.
- W2942471690 cites W2082261407 @default.
- W2942471690 cites W2095775020 @default.
- W2942471690 cites W2109449402 @default.
- W2942471690 cites W2112858385 @default.
- W2942471690 cites W2114424556 @default.
- W2942471690 cites W2115706991 @default.
- W2942471690 cites W2124964692 @default.
- W2942471690 cites W2125389028 @default.
- W2942471690 cites W2135367316 @default.
- W2942471690 cites W2138598313 @default.
- W2942471690 cites W2152415136 @default.
- W2942471690 cites W2161663128 @default.
- W2942471690 cites W2163940565 @default.
- W2942471690 cites W2164452299 @default.
- W2942471690 cites W2188365844 @default.
- W2942471690 cites W2273561594 @default.
- W2942471690 cites W2296616510 @default.
- W2942471690 cites W2405756170 @default.
- W2942471690 cites W2464471867 @default.
- W2942471690 cites W2548275288 @default.
- W2942471690 cites W2557449848 @default.
- W2942471690 cites W2593966629 @default.
- W2942471690 cites W2595294663 @default.
- W2942471690 cites W2604885021 @default.
- W2942471690 cites W2613155248 @default.
- W2942471690 cites W2617669016 @default.
- W2942471690 cites W2621182918 @default.
- W2942471690 cites W2626218869 @default.
- W2942471690 cites W2626454479 @default.
- W2942471690 cites W2782977076 @default.
- W2942471690 cites W2811395263 @default.
- W2942471690 cites W2866415919 @default.
- W2942471690 cites W2901093491 @default.
- W2942471690 cites W2914315974 @default.
- W2942471690 cites W2949416428 @default.
- W2942471690 cites W2949899814 @default.
- W2942471690 cites W2950739196 @default.
- W2942471690 cites W2950788055 @default.
- W2942471690 cites W2952019742 @default.
- W2942471690 cites W2962851448 @default.
- W2942471690 cites W2963043971 @default.
- W2942471690 cites W2963073614 @default.
- W2942471690 cites W2963341557 @default.
- W2942471690 cites W2963420272 @default.
- W2942471690 cites W2963470893 @default.
- W2942471690 cites W2963567641 @default.
- W2942471690 cites W2963814976 @default.
- W2942471690 cites W2965781583 @default.
- W2942471690 cites W2972343969 @default.
- W2942471690 cites W3100730608 @default.
- W2942471690 cites W3101765447 @default.
- W2942471690 cites W3104976876 @default.
- W2942471690 cites W3118608800 @default.
- W2942471690 cites W607295235 @default.
- W2942471690 cites W2065030431 @default.
- W2942471690 hasPublicationYear "2019" @default.
- W2942471690 type Work @default.
- W2942471690 sameAs 2942471690 @default.
- W2942471690 citedByCount "4" @default.
- W2942471690 countsByYear W29424716902020 @default.
- W2942471690 countsByYear W29424716902021 @default.
- W2942471690 crossrefType "posted-content" @default.
- W2942471690 hasAuthorship W2942471690A5005343200 @default.
- W2942471690 hasAuthorship W2942471690A5017068912 @default.
- W2942471690 hasAuthorship W2942471690A5070918132 @default.
- W2942471690 hasAuthorship W2942471690A5082496896 @default.