Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942720350> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2942720350 abstract "Brain tumor has been a cause of concern for the medical fraternity. The manual segmentation of brain tumor by medical expert is a time-consuming process and this needs to be automated. The Computer-aided diagnosis (CAD) system, help to improve the diagnosis and reduces the overall time required to identify the tumor. Researchers have proposed methods that can diagnose brain tumor based on machine learning and deep learning techniques. But the methods based on deep learning have proven much better than the traditional machine learning methods. In this paper we have discussed the state-of-the-art methods for brain tumor segmentation based on deep learning." @default.
- W2942720350 created "2019-05-09" @default.
- W2942720350 creator A5030978363 @default.
- W2942720350 creator A5054839030 @default.
- W2942720350 creator A5065781653 @default.
- W2942720350 date "2018-12-01" @default.
- W2942720350 modified "2023-09-27" @default.
- W2942720350 title "Deep Leaming Approaches for Brain Tumor Segmentation: A Review" @default.
- W2942720350 cites W1641498739 @default.
- W2942720350 cites W1702449523 @default.
- W2942720350 cites W1884191083 @default.
- W2942720350 cites W1910109443 @default.
- W2942720350 cites W2112518510 @default.
- W2942720350 cites W2141619730 @default.
- W2942720350 cites W2150534249 @default.
- W2942720350 cites W2293063104 @default.
- W2942720350 cites W2301358467 @default.
- W2942720350 cites W2310992461 @default.
- W2942720350 cites W2529926598 @default.
- W2942720350 cites W2534299759 @default.
- W2942720350 cites W2566689671 @default.
- W2942720350 cites W2587964694 @default.
- W2942720350 cites W2780099243 @default.
- W2942720350 cites W2891118631 @default.
- W2942720350 doi "https://doi.org/10.1109/icsccc.2018.8703202" @default.
- W2942720350 hasPublicationYear "2018" @default.
- W2942720350 type Work @default.
- W2942720350 sameAs 2942720350 @default.
- W2942720350 citedByCount "4" @default.
- W2942720350 countsByYear W29427203502019 @default.
- W2942720350 countsByYear W29427203502020 @default.
- W2942720350 countsByYear W29427203502021 @default.
- W2942720350 crossrefType "proceedings-article" @default.
- W2942720350 hasAuthorship W2942720350A5030978363 @default.
- W2942720350 hasAuthorship W2942720350A5054839030 @default.
- W2942720350 hasAuthorship W2942720350A5065781653 @default.
- W2942720350 hasConcept C108583219 @default.
- W2942720350 hasConcept C111919701 @default.
- W2942720350 hasConcept C119857082 @default.
- W2942720350 hasConcept C142724271 @default.
- W2942720350 hasConcept C154945302 @default.
- W2942720350 hasConcept C17744445 @default.
- W2942720350 hasConcept C199539241 @default.
- W2942720350 hasConcept C2777239462 @default.
- W2942720350 hasConcept C2779130545 @default.
- W2942720350 hasConcept C41008148 @default.
- W2942720350 hasConcept C71924100 @default.
- W2942720350 hasConcept C89600930 @default.
- W2942720350 hasConcept C98045186 @default.
- W2942720350 hasConceptScore W2942720350C108583219 @default.
- W2942720350 hasConceptScore W2942720350C111919701 @default.
- W2942720350 hasConceptScore W2942720350C119857082 @default.
- W2942720350 hasConceptScore W2942720350C142724271 @default.
- W2942720350 hasConceptScore W2942720350C154945302 @default.
- W2942720350 hasConceptScore W2942720350C17744445 @default.
- W2942720350 hasConceptScore W2942720350C199539241 @default.
- W2942720350 hasConceptScore W2942720350C2777239462 @default.
- W2942720350 hasConceptScore W2942720350C2779130545 @default.
- W2942720350 hasConceptScore W2942720350C41008148 @default.
- W2942720350 hasConceptScore W2942720350C71924100 @default.
- W2942720350 hasConceptScore W2942720350C89600930 @default.
- W2942720350 hasConceptScore W2942720350C98045186 @default.
- W2942720350 hasLocation W29427203501 @default.
- W2942720350 hasOpenAccess W2942720350 @default.
- W2942720350 hasPrimaryLocation W29427203501 @default.
- W2942720350 hasRelatedWork W3105843050 @default.
- W2942720350 hasRelatedWork W3163071387 @default.
- W2942720350 hasRelatedWork W3171139604 @default.
- W2942720350 hasRelatedWork W3186932098 @default.
- W2942720350 hasRelatedWork W3212329372 @default.
- W2942720350 hasRelatedWork W3214185682 @default.
- W2942720350 hasRelatedWork W4221008484 @default.
- W2942720350 hasRelatedWork W4224064723 @default.
- W2942720350 hasRelatedWork W4235979535 @default.
- W2942720350 hasRelatedWork W4283767565 @default.
- W2942720350 isParatext "false" @default.
- W2942720350 isRetracted "false" @default.
- W2942720350 magId "2942720350" @default.
- W2942720350 workType "article" @default.