Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942792024> ?p ?o ?g. }
- W2942792024 abstract "Alternative polyadenylation (APA) has emerged as a pervasive mechanism that contributes to the transcriptome complexity and dynamics of gene regulation. The current tsunami of whole genome poly(A) site data from various conditions generated by 3' end sequencing provides a valuable data source for the study of APA-related gene expression. Cluster analysis is a powerful technique for investigating the association structure among genes, however, conventional gene clustering methods are not suitable for APA-related data as they fail to consider the information of poly(A) sites (e.g., location, abundance, number, etc.) within each gene or measure the association among poly(A) sites between two genes.Here we proposed a computational framework, named PASCCA, for clustering genes from replicated or unreplicated poly(A) site data using canonical correlation analysis (CCA). PASCCA incorporates multiple layers of gene expression data from both the poly(A) site level and gene level and takes into account the number of replicates and the variability within each experimental group. Moreover, PASCCA characterizes poly(A) sites in various ways including the abundance and relative usage, which can exploit the advantages of 3' end deep sequencing in quantifying APA sites. Using both real and synthetic poly(A) site data sets, the cluster analysis demonstrates that PASCCA outperforms other widely-used distance measures under five performance metrics including connectivity, the Dunn index, average distance, average distance between means, and the biological homogeneity index. We also used PASCCA to infer APA-specific gene modules from recently published poly(A) site data of rice and discovered some distinct functional gene modules. We have made PASCCA an easy-to-use R package for APA-related gene expression analyses, including the characterization of poly(A) sites, quantification of association between genes, and clustering of genes.By providing a better treatment of the noise inherent in repeated measurements and taking into account multiple layers of poly(A) site data, PASCCA could be a general tool for clustering and analyzing APA-specific gene expression data. PASCCA could be used to elucidate the dynamic interplay of genes and their APA sites among various biological conditions from emerging 3' end sequencing data to address the complex biological phenomenon." @default.
- W2942792024 created "2019-05-09" @default.
- W2942792024 creator A5008200751 @default.
- W2942792024 creator A5041339417 @default.
- W2942792024 creator A5062005196 @default.
- W2942792024 creator A5072324207 @default.
- W2942792024 creator A5079351108 @default.
- W2942792024 creator A5082084084 @default.
- W2942792024 creator A5091165765 @default.
- W2942792024 date "2019-01-22" @default.
- W2942792024 modified "2023-10-14" @default.
- W2942792024 title "Cluster analysis of replicated alternative polyadenylation data using canonical correlation analysis" @default.
- W2942792024 cites W1825749565 @default.
- W2942792024 cites W1909699921 @default.
- W2942792024 cites W1964727443 @default.
- W2942792024 cites W1966327575 @default.
- W2942792024 cites W1967637890 @default.
- W2942792024 cites W1974487483 @default.
- W2942792024 cites W1976089490 @default.
- W2942792024 cites W1984183317 @default.
- W2942792024 cites W1984250222 @default.
- W2942792024 cites W1985267020 @default.
- W2942792024 cites W1987940107 @default.
- W2942792024 cites W1990512452 @default.
- W2942792024 cites W2013748289 @default.
- W2942792024 cites W2016311778 @default.
- W2942792024 cites W2016493165 @default.
- W2942792024 cites W2018300670 @default.
- W2942792024 cites W2019997982 @default.
- W2942792024 cites W2062125287 @default.
- W2942792024 cites W2063151549 @default.
- W2942792024 cites W2065213545 @default.
- W2942792024 cites W2083196263 @default.
- W2942792024 cites W2097664345 @default.
- W2942792024 cites W2099915768 @default.
- W2942792024 cites W2101815618 @default.
- W2942792024 cites W2104724027 @default.
- W2942792024 cites W2104905785 @default.
- W2942792024 cites W2108264419 @default.
- W2942792024 cites W2118204745 @default.
- W2942792024 cites W2118834857 @default.
- W2942792024 cites W2119204091 @default.
- W2942792024 cites W2128985829 @default.
- W2942792024 cites W2131681506 @default.
- W2942792024 cites W2133098435 @default.
- W2942792024 cites W2134179844 @default.
- W2942792024 cites W2141458291 @default.
- W2942792024 cites W2148223953 @default.
- W2942792024 cites W2150926065 @default.
- W2942792024 cites W2151097405 @default.
- W2942792024 cites W2152006128 @default.
- W2942792024 cites W2152239989 @default.
- W2942792024 cites W2154066898 @default.
- W2942792024 cites W2163480486 @default.
- W2942792024 cites W2163741321 @default.
- W2942792024 cites W2164628006 @default.
- W2942792024 cites W2168961527 @default.
- W2942792024 cites W2170656559 @default.
- W2942792024 cites W2172203661 @default.
- W2942792024 cites W2197435819 @default.
- W2942792024 cites W2269883402 @default.
- W2942792024 cites W2328499817 @default.
- W2942792024 cites W2339995329 @default.
- W2942792024 cites W2412406395 @default.
- W2942792024 cites W2461965332 @default.
- W2942792024 cites W2466240270 @default.
- W2942792024 cites W2525507785 @default.
- W2942792024 cites W2530884444 @default.
- W2942792024 cites W2559479590 @default.
- W2942792024 cites W2609219502 @default.
- W2942792024 cites W2766614445 @default.
- W2942792024 cites W2802396666 @default.
- W2942792024 cites W4237723258 @default.
- W2942792024 cites W4254466172 @default.
- W2942792024 doi "https://doi.org/10.1186/s12864-019-5433-7" @default.
- W2942792024 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6343338" @default.
- W2942792024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30669970" @default.
- W2942792024 hasPublicationYear "2019" @default.
- W2942792024 type Work @default.
- W2942792024 sameAs 2942792024 @default.
- W2942792024 citedByCount "0" @default.
- W2942792024 crossrefType "journal-article" @default.
- W2942792024 hasAuthorship W2942792024A5008200751 @default.
- W2942792024 hasAuthorship W2942792024A5041339417 @default.
- W2942792024 hasAuthorship W2942792024A5062005196 @default.
- W2942792024 hasAuthorship W2942792024A5072324207 @default.
- W2942792024 hasAuthorship W2942792024A5079351108 @default.
- W2942792024 hasAuthorship W2942792024A5082084084 @default.
- W2942792024 hasAuthorship W2942792024A5091165765 @default.
- W2942792024 hasBestOaLocation W29427920241 @default.
- W2942792024 hasConcept C104317684 @default.
- W2942792024 hasConcept C124101348 @default.
- W2942792024 hasConcept C142575336 @default.
- W2942792024 hasConcept C150194340 @default.
- W2942792024 hasConcept C154945302 @default.
- W2942792024 hasConcept C18431079 @default.
- W2942792024 hasConcept C41008148 @default.
- W2942792024 hasConcept C54355233 @default.
- W2942792024 hasConcept C70721500 @default.
- W2942792024 hasConcept C73555534 @default.