Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942865718> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2942865718 endingPage "63" @default.
- W2942865718 startingPage "57" @default.
- W2942865718 abstract "In order to remove useful information, large amounts of medical data require intelligent equipment. Techniques have been implemented in a number of different areas, including bioinformatics, business, industry, computer vision. Many researchers have been done with the help of such techniques. There is a lack of effective analysis tools to find hidden relationships and trends in medical data from clinical records. Heart disease is considered the leading cause of death worldwide in the last 15 years. Medical data is still rich in information but knowledge is poor. Researchers have used several statistical analyses and various health care techniques or tools to improve the diagnosis accuracy in the medical healthcare service. In this paper, it was majorly discussed all the research work being carried out using the data mining techniques to enhance heart disease diagnosis and prediction including decision trees, Naive Bayes classifiers, K-nearest neighbor classification (KNN), support vector machine (SVM), decision tree and PCA. Results show that SVM and knn perform positively high to predict the presence of coronary heart diseases (CHD). The use of a decision tree is considered as the best-recommended classifier to diagnose cardiovascular disease (CVD). Still, the performance of data mining techniques to detect coronary arteries diseases (CAD) is not encouraging (between 70—80%) and further improvements should be pursued." @default.
- W2942865718 created "2019-05-09" @default.
- W2942865718 creator A5012434757 @default.
- W2942865718 creator A5018562038 @default.
- W2942865718 creator A5067706821 @default.
- W2942865718 creator A5087427577 @default.
- W2942865718 date "2019-04-30" @default.
- W2942865718 modified "2023-09-23" @default.
- W2942865718 title "A Review Paper on the Comparative Study of Intelligent Heart Disease Prediction System" @default.
- W2942865718 doi "https://doi.org/10.23956/ijarcsse.v9i4.985" @default.
- W2942865718 hasPublicationYear "2019" @default.
- W2942865718 type Work @default.
- W2942865718 sameAs 2942865718 @default.
- W2942865718 citedByCount "0" @default.
- W2942865718 crossrefType "proceedings-article" @default.
- W2942865718 hasAuthorship W2942865718A5012434757 @default.
- W2942865718 hasAuthorship W2942865718A5018562038 @default.
- W2942865718 hasAuthorship W2942865718A5067706821 @default.
- W2942865718 hasAuthorship W2942865718A5087427577 @default.
- W2942865718 hasConcept C107327155 @default.
- W2942865718 hasConcept C110083411 @default.
- W2942865718 hasConcept C119857082 @default.
- W2942865718 hasConcept C12267149 @default.
- W2942865718 hasConcept C124101348 @default.
- W2942865718 hasConcept C154945302 @default.
- W2942865718 hasConcept C41008148 @default.
- W2942865718 hasConcept C52001869 @default.
- W2942865718 hasConcept C5481197 @default.
- W2942865718 hasConcept C63527458 @default.
- W2942865718 hasConcept C84525736 @default.
- W2942865718 hasConcept C95623464 @default.
- W2942865718 hasConceptScore W2942865718C107327155 @default.
- W2942865718 hasConceptScore W2942865718C110083411 @default.
- W2942865718 hasConceptScore W2942865718C119857082 @default.
- W2942865718 hasConceptScore W2942865718C12267149 @default.
- W2942865718 hasConceptScore W2942865718C124101348 @default.
- W2942865718 hasConceptScore W2942865718C154945302 @default.
- W2942865718 hasConceptScore W2942865718C41008148 @default.
- W2942865718 hasConceptScore W2942865718C52001869 @default.
- W2942865718 hasConceptScore W2942865718C5481197 @default.
- W2942865718 hasConceptScore W2942865718C63527458 @default.
- W2942865718 hasConceptScore W2942865718C84525736 @default.
- W2942865718 hasConceptScore W2942865718C95623464 @default.
- W2942865718 hasIssue "4" @default.
- W2942865718 hasLocation W29428657181 @default.
- W2942865718 hasOpenAccess W2942865718 @default.
- W2942865718 hasPrimaryLocation W29428657181 @default.
- W2942865718 hasRelatedWork W2054029017 @default.
- W2942865718 hasRelatedWork W2184051543 @default.
- W2942865718 hasRelatedWork W2184956279 @default.
- W2942865718 hasRelatedWork W2614000587 @default.
- W2942865718 hasRelatedWork W2785813055 @default.
- W2942865718 hasRelatedWork W2798566193 @default.
- W2942865718 hasRelatedWork W2800480590 @default.
- W2942865718 hasRelatedWork W2902335884 @default.
- W2942865718 hasRelatedWork W2914956382 @default.
- W2942865718 hasRelatedWork W2991728914 @default.
- W2942865718 hasRelatedWork W3017483137 @default.
- W2942865718 hasRelatedWork W3023794563 @default.
- W2942865718 hasRelatedWork W3025182812 @default.
- W2942865718 hasRelatedWork W3046657815 @default.
- W2942865718 hasRelatedWork W3127192532 @default.
- W2942865718 hasRelatedWork W3129078675 @default.
- W2942865718 hasRelatedWork W3137393605 @default.
- W2942865718 hasRelatedWork W3208430117 @default.
- W2942865718 hasRelatedWork W3214031848 @default.
- W2942865718 hasRelatedWork W2949130511 @default.
- W2942865718 hasVolume "9" @default.
- W2942865718 isParatext "false" @default.
- W2942865718 isRetracted "false" @default.
- W2942865718 magId "2942865718" @default.
- W2942865718 workType "article" @default.