Matches in SemOpenAlex for { <https://semopenalex.org/work/W2942876873> ?p ?o ?g. }
- W2942876873 endingPage "606" @default.
- W2942876873 startingPage "606" @default.
- W2942876873 abstract "Background: Although surgical resection is the only potentially curative treatment for pancreatic cancer (PC), long-term outcomes of this treatment remain poor. The aim of this study is to describe the feasibility of a neoadjuvant treatment with induction polychemotherapy (IPCT) followed by chemoradiation (CRT) in resectable PC, and to develop a machine-learning algorithm to predict risk of relapse. Methods: Forty patients with resectable PC treated in our institution with IPCT (based on mFOLFOXIRI, GEMOX or GEMOXEL) followed by CRT (50 Gy and concurrent Capecitabine) were retrospectively analyzed. Additionally, clinical, pathological and analytical data were collected in order to perform a 2-year relapse-risk predictive population model using machine-learning techniques. Results: A R0 resection was achieved in 90% of the patients. After a median follow-up of 33.5 months, median progression-free survival (PFS) was 18 months and median overall survival (OS) was 39 months. The 3 and 5-year actuarial PFS were 43.8% and 32.3%, respectively. The 3 and 5-year actuarial OS were 51.5% and 34.8%, respectively. Forty-percent of grade 3-4 IPCT toxicity, and 29.7% of grade 3 CRT toxicity were reported. Considering the use of granulocyte colony-stimulating factors, the number of resected lymph nodes, the presence of perineural invasion and the surgical margin status, a logistic regression algorithm predicted the individual 2-year relapse-risk with an accuracy of 0.71 (95% confidence interval [CI] 0.56–0.84, p = 0.005). The model-predicted outcome matched 64% of the observed outcomes in an external dataset. Conclusion: An intensified multimodal neoadjuvant approach (IPCT + CRT) in resectable PC is feasible, with an encouraging long-term outcome. Machine-learning algorithms might be a useful tool to predict individual risk of relapse. A small sample size and therapy heterogeneity remain as potential limitations." @default.
- W2942876873 created "2019-05-09" @default.
- W2942876873 creator A5006228374 @default.
- W2942876873 creator A5009446517 @default.
- W2942876873 creator A5009675579 @default.
- W2942876873 creator A5013426495 @default.
- W2942876873 creator A5026662740 @default.
- W2942876873 creator A5028783464 @default.
- W2942876873 creator A5035325944 @default.
- W2942876873 creator A5052248512 @default.
- W2942876873 creator A5053495966 @default.
- W2942876873 creator A5053829776 @default.
- W2942876873 creator A5064241565 @default.
- W2942876873 creator A5070458095 @default.
- W2942876873 creator A5071601521 @default.
- W2942876873 creator A5078597941 @default.
- W2942876873 creator A5083931469 @default.
- W2942876873 creator A5089821681 @default.
- W2942876873 date "2019-04-30" @default.
- W2942876873 modified "2023-10-18" @default.
- W2942876873 title "Use of Machine-Learning Algorithms in Intensified Preoperative Therapy of Pancreatic Cancer to Predict Individual Risk of Relapse" @default.
- W2942876873 cites W1498143967 @default.
- W2942876873 cites W1531212831 @default.
- W2942876873 cites W1620688702 @default.
- W2942876873 cites W1881875923 @default.
- W2942876873 cites W1955000909 @default.
- W2942876873 cites W1968812902 @default.
- W2942876873 cites W1980731937 @default.
- W2942876873 cites W1987355037 @default.
- W2942876873 cites W1996472967 @default.
- W2942876873 cites W1997796151 @default.
- W2942876873 cites W2005919713 @default.
- W2942876873 cites W2012161505 @default.
- W2942876873 cites W2013507617 @default.
- W2942876873 cites W2014067939 @default.
- W2942876873 cites W2019911160 @default.
- W2942876873 cites W2024418047 @default.
- W2942876873 cites W2024970269 @default.
- W2942876873 cites W2034815263 @default.
- W2942876873 cites W2046714873 @default.
- W2942876873 cites W2047318784 @default.
- W2942876873 cites W2053932797 @default.
- W2942876873 cites W2071500602 @default.
- W2942876873 cites W2073826833 @default.
- W2942876873 cites W2077003423 @default.
- W2942876873 cites W2086830718 @default.
- W2942876873 cites W2088292133 @default.
- W2942876873 cites W2089348717 @default.
- W2942876873 cites W2091405318 @default.
- W2942876873 cites W2097421939 @default.
- W2942876873 cites W2107236131 @default.
- W2942876873 cites W2111314439 @default.
- W2942876873 cites W2115812130 @default.
- W2942876873 cites W2117009632 @default.
- W2942876873 cites W2119107631 @default.
- W2942876873 cites W2121823666 @default.
- W2942876873 cites W2132558057 @default.
- W2942876873 cites W2133195786 @default.
- W2942876873 cites W2138582833 @default.
- W2942876873 cites W2138734774 @default.
- W2942876873 cites W2150881991 @default.
- W2942876873 cites W2151253787 @default.
- W2942876873 cites W2157590016 @default.
- W2942876873 cites W2168667876 @default.
- W2942876873 cites W2175026653 @default.
- W2942876873 cites W2197567473 @default.
- W2942876873 cites W2285093314 @default.
- W2942876873 cites W2479745474 @default.
- W2942876873 cites W2488895845 @default.
- W2942876873 cites W2520770744 @default.
- W2942876873 cites W2581973599 @default.
- W2942876873 cites W2594962867 @default.
- W2942876873 cites W2607175459 @default.
- W2942876873 cites W2609928307 @default.
- W2942876873 cites W2743061229 @default.
- W2942876873 cites W2766665236 @default.
- W2942876873 cites W2781525129 @default.
- W2942876873 cites W2784458618 @default.
- W2942876873 cites W2793905739 @default.
- W2942876873 cites W2805624157 @default.
- W2942876873 cites W2885814352 @default.
- W2942876873 cites W4233358210 @default.
- W2942876873 cites W592682419 @default.
- W2942876873 cites W993424279 @default.
- W2942876873 doi "https://doi.org/10.3390/cancers11050606" @default.
- W2942876873 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6562932" @default.
- W2942876873 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31052270" @default.
- W2942876873 hasPublicationYear "2019" @default.
- W2942876873 type Work @default.
- W2942876873 sameAs 2942876873 @default.
- W2942876873 citedByCount "19" @default.
- W2942876873 countsByYear W29428768732019 @default.
- W2942876873 countsByYear W29428768732020 @default.
- W2942876873 countsByYear W29428768732021 @default.
- W2942876873 countsByYear W29428768732022 @default.
- W2942876873 countsByYear W29428768732023 @default.
- W2942876873 crossrefType "journal-article" @default.
- W2942876873 hasAuthorship W2942876873A5006228374 @default.