Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943048304> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2943048304 abstract "Infarcted brain tissue resulting from acute stroke readily shows up as hyperintense regions within diffusion-weighted magnetic resonance imaging (DWI). It has also been proposed that computed tomography perfusion (CTP) could alternatively be used to triage stroke patients, given improvements in speed and availability, as well as reduced cost. However, CTP has a lower signal to noise ratio compared to MR. In this work, we investigate whether a conditional mapping can be learned by a generative adversarial network to map CTP inputs to generated MR DWI that more clearly delineates hyperintense regions due to ischemic stroke. We detail the architectures of the generator and discriminator and describe the training process used to perform image-to-image translation from multi-modal CT perfusion maps to diffusion weighted MR outputs. We evaluate the results both qualitatively by visual comparison of generated MR to ground truth, as well as quantitatively by training fully convolutional neural networks that make use of generated MR data inputs to perform ischemic stroke lesion segmentation. Segmentation networks trained using generated CT-to-MR inputs result in at least some improvement on all metrics used for evaluation, compared with networks that only use CT perfusion input." @default.
- W2943048304 created "2019-05-09" @default.
- W2943048304 creator A5063988947 @default.
- W2943048304 creator A5072102232 @default.
- W2943048304 date "2019-04-30" @default.
- W2943048304 modified "2023-09-23" @default.
- W2943048304 title "CT-To-MR Conditional Generative Adversarial Networks for Ischemic Stroke Lesion Segmentation" @default.
- W2943048304 cites W1980357202 @default.
- W2943048304 cites W1998525100 @default.
- W2943048304 cites W2006065208 @default.
- W2943048304 cites W2031489346 @default.
- W2943048304 cites W2079934729 @default.
- W2943048304 cites W2099471712 @default.
- W2943048304 cites W2125389028 @default.
- W2943048304 cites W2194775991 @default.
- W2943048304 cites W2419532403 @default.
- W2943048304 cites W2484736472 @default.
- W2943048304 cites W2502312327 @default.
- W2943048304 cites W2552465644 @default.
- W2943048304 cites W2560023338 @default.
- W2943048304 cites W2567079332 @default.
- W2943048304 cites W2745006834 @default.
- W2943048304 cites W2794103425 @default.
- W2943048304 cites W2797591221 @default.
- W2943048304 cites W2806695658 @default.
- W2943048304 cites W2884561390 @default.
- W2943048304 cites W2885110074 @default.
- W2943048304 cites W2890354008 @default.
- W2943048304 cites W2891214351 @default.
- W2943048304 cites W2949117887 @default.
- W2943048304 cites W2949645397 @default.
- W2943048304 cites W2962793481 @default.
- W2943048304 cites W2962878449 @default.
- W2943048304 cites W2963840672 @default.
- W2943048304 hasPublicationYear "2019" @default.
- W2943048304 type Work @default.
- W2943048304 sameAs 2943048304 @default.
- W2943048304 citedByCount "0" @default.
- W2943048304 crossrefType "posted-content" @default.
- W2943048304 hasAuthorship W2943048304A5063988947 @default.
- W2943048304 hasAuthorship W2943048304A5072102232 @default.
- W2943048304 hasConcept C121332964 @default.
- W2943048304 hasConcept C126838900 @default.
- W2943048304 hasConcept C143409427 @default.
- W2943048304 hasConcept C146849305 @default.
- W2943048304 hasConcept C153180895 @default.
- W2943048304 hasConcept C154945302 @default.
- W2943048304 hasConcept C2779803651 @default.
- W2943048304 hasConcept C2780645631 @default.
- W2943048304 hasConcept C41008148 @default.
- W2943048304 hasConcept C71924100 @default.
- W2943048304 hasConcept C76155785 @default.
- W2943048304 hasConcept C81363708 @default.
- W2943048304 hasConcept C89600930 @default.
- W2943048304 hasConcept C94915269 @default.
- W2943048304 hasConcept C97355855 @default.
- W2943048304 hasConceptScore W2943048304C121332964 @default.
- W2943048304 hasConceptScore W2943048304C126838900 @default.
- W2943048304 hasConceptScore W2943048304C143409427 @default.
- W2943048304 hasConceptScore W2943048304C146849305 @default.
- W2943048304 hasConceptScore W2943048304C153180895 @default.
- W2943048304 hasConceptScore W2943048304C154945302 @default.
- W2943048304 hasConceptScore W2943048304C2779803651 @default.
- W2943048304 hasConceptScore W2943048304C2780645631 @default.
- W2943048304 hasConceptScore W2943048304C41008148 @default.
- W2943048304 hasConceptScore W2943048304C71924100 @default.
- W2943048304 hasConceptScore W2943048304C76155785 @default.
- W2943048304 hasConceptScore W2943048304C81363708 @default.
- W2943048304 hasConceptScore W2943048304C89600930 @default.
- W2943048304 hasConceptScore W2943048304C94915269 @default.
- W2943048304 hasConceptScore W2943048304C97355855 @default.
- W2943048304 hasOpenAccess W2943048304 @default.
- W2943048304 hasRelatedWork W144257538 @default.
- W2943048304 hasRelatedWork W1505527646 @default.
- W2943048304 hasRelatedWork W2039036478 @default.
- W2943048304 hasRelatedWork W2101921531 @default.
- W2943048304 hasRelatedWork W2141188903 @default.
- W2943048304 hasRelatedWork W2178205807 @default.
- W2943048304 hasRelatedWork W2754216231 @default.
- W2943048304 hasRelatedWork W2893461665 @default.
- W2943048304 hasRelatedWork W2947077408 @default.
- W2943048304 hasRelatedWork W2966223777 @default.
- W2943048304 hasRelatedWork W2989569097 @default.
- W2943048304 hasRelatedWork W3002791056 @default.
- W2943048304 hasRelatedWork W3026947018 @default.
- W2943048304 hasRelatedWork W3042519501 @default.
- W2943048304 hasRelatedWork W3048890183 @default.
- W2943048304 hasRelatedWork W3105004106 @default.
- W2943048304 hasRelatedWork W3144870021 @default.
- W2943048304 hasRelatedWork W3178292671 @default.
- W2943048304 hasRelatedWork W3193071922 @default.
- W2943048304 hasRelatedWork W3198627688 @default.
- W2943048304 isParatext "false" @default.
- W2943048304 isRetracted "false" @default.
- W2943048304 magId "2943048304" @default.
- W2943048304 workType "article" @default.