Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943057997> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2943057997 endingPage "3377" @default.
- W2943057997 startingPage "3361" @default.
- W2943057997 abstract "The receiver operating characteristic (ROC) surface, as a generalization of the ROC curve, has been widely used to assess the accuracy of a diagnostic test for three categories. A common problem is verification bias, referring to the situation where not all subjects have their true classes verified. In this paper, we consider the problem of estimating the ROC surface under verification bias. We adopt a Bayesian nonparametric approach by directly modeling the underlying distributions of the three categories by Dirichlet process mixture priors. We propose a robust computing algorithm by only imposing a missing at random assumption for the verification process but no assumption on the distributions. The method can also accommodate covariates information in estimating the ROC surface, which can lead to a more comprehensive understanding of the diagnostic accuracy. It can be adapted and hugely simplified in the case where there is no verification bias, and very fast computation is possible through the Bayesian bootstrap process. The proposed method is compared with other commonly used methods by extensive simulations. We find that the proposed method generally outperforms other approaches. Applying the method to two real datasets, the key findings are as follows: (1) human epididymis protein 4 has a slightly better diagnosis ability compared to CA125 in discriminating healthy, early stage, and late stage patients of epithelial ovarian cancer. (2) Serum albumin has a prognostic ability in distinguishing different stages of hepatocellular carcinoma." @default.
- W2943057997 created "2019-05-09" @default.
- W2943057997 creator A5011476402 @default.
- W2943057997 creator A5040778874 @default.
- W2943057997 date "2019-05-03" @default.
- W2943057997 modified "2023-09-27" @default.
- W2943057997 title "Bayesian nonparametric estimation of ROC surface under verification bias" @default.
- W2943057997 cites W1498919569 @default.
- W2943057997 cites W1976424051 @default.
- W2943057997 cites W1981744949 @default.
- W2943057997 cites W2011152350 @default.
- W2943057997 cites W2016201909 @default.
- W2943057997 cites W2029177884 @default.
- W2943057997 cites W2043856391 @default.
- W2943057997 cites W2048077106 @default.
- W2943057997 cites W2066215616 @default.
- W2943057997 cites W2081897112 @default.
- W2943057997 cites W2091966477 @default.
- W2943057997 cites W2133563811 @default.
- W2943057997 cites W2143225045 @default.
- W2943057997 cites W2146711830 @default.
- W2943057997 cites W2149614271 @default.
- W2943057997 cites W2155587446 @default.
- W2943057997 cites W2168366176 @default.
- W2943057997 cites W2342134988 @default.
- W2943057997 cites W2582878252 @default.
- W2943057997 cites W2613196848 @default.
- W2943057997 cites W2735882090 @default.
- W2943057997 cites W2736618479 @default.
- W2943057997 cites W2752287217 @default.
- W2943057997 cites W2770113703 @default.
- W2943057997 cites W2891032350 @default.
- W2943057997 cites W4301023391 @default.
- W2943057997 doi "https://doi.org/10.1002/sim.8181" @default.
- W2943057997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31049998" @default.
- W2943057997 hasPublicationYear "2019" @default.
- W2943057997 type Work @default.
- W2943057997 sameAs 2943057997 @default.
- W2943057997 citedByCount "1" @default.
- W2943057997 countsByYear W29430579972020 @default.
- W2943057997 crossrefType "journal-article" @default.
- W2943057997 hasAuthorship W2943057997A5011476402 @default.
- W2943057997 hasAuthorship W2943057997A5040778874 @default.
- W2943057997 hasConcept C102366305 @default.
- W2943057997 hasConcept C105795698 @default.
- W2943057997 hasConcept C107673813 @default.
- W2943057997 hasConcept C11413529 @default.
- W2943057997 hasConcept C119043178 @default.
- W2943057997 hasConcept C119857082 @default.
- W2943057997 hasConcept C153180895 @default.
- W2943057997 hasConcept C154945302 @default.
- W2943057997 hasConcept C177769412 @default.
- W2943057997 hasConcept C2781280628 @default.
- W2943057997 hasConcept C33923547 @default.
- W2943057997 hasConcept C41008148 @default.
- W2943057997 hasConcept C58471807 @default.
- W2943057997 hasConceptScore W2943057997C102366305 @default.
- W2943057997 hasConceptScore W2943057997C105795698 @default.
- W2943057997 hasConceptScore W2943057997C107673813 @default.
- W2943057997 hasConceptScore W2943057997C11413529 @default.
- W2943057997 hasConceptScore W2943057997C119043178 @default.
- W2943057997 hasConceptScore W2943057997C119857082 @default.
- W2943057997 hasConceptScore W2943057997C153180895 @default.
- W2943057997 hasConceptScore W2943057997C154945302 @default.
- W2943057997 hasConceptScore W2943057997C177769412 @default.
- W2943057997 hasConceptScore W2943057997C2781280628 @default.
- W2943057997 hasConceptScore W2943057997C33923547 @default.
- W2943057997 hasConceptScore W2943057997C41008148 @default.
- W2943057997 hasConceptScore W2943057997C58471807 @default.
- W2943057997 hasIssue "18" @default.
- W2943057997 hasLocation W29430579971 @default.
- W2943057997 hasOpenAccess W2943057997 @default.
- W2943057997 hasPrimaryLocation W29430579971 @default.
- W2943057997 hasRelatedWork W2000479469 @default.
- W2943057997 hasRelatedWork W2007016495 @default.
- W2943057997 hasRelatedWork W2040257654 @default.
- W2943057997 hasRelatedWork W2162923601 @default.
- W2943057997 hasRelatedWork W2770009367 @default.
- W2943057997 hasRelatedWork W2788920412 @default.
- W2943057997 hasRelatedWork W2949883983 @default.
- W2943057997 hasRelatedWork W3017203039 @default.
- W2943057997 hasRelatedWork W4301465071 @default.
- W2943057997 hasRelatedWork W4312901857 @default.
- W2943057997 hasVolume "38" @default.
- W2943057997 isParatext "false" @default.
- W2943057997 isRetracted "false" @default.
- W2943057997 magId "2943057997" @default.
- W2943057997 workType "article" @default.