Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943065845> ?p ?o ?g. }
- W2943065845 endingPage "55260" @default.
- W2943065845 startingPage "55248" @default.
- W2943065845 abstract "In recent years, a 3D reconstruction based on structure from motion (SFM) has attracted much attention from the communities of computer vision and graphics. It is well known that the speed and quality of SFM systems largely depend on the technique of feature tracking. If a big volume of image data is inputted for SFM, the speed of this SFM system would become very slow. And, this problem becomes severer for large-scale scenes, which typically needs to capture several thousands of images to recover the point-cloud model of the scene. However, none of the existing methods fully addresses the problem of fast feature tracking. Brute force matching is capable of producing correspondences for small-scale scenes but often getting stuck in repeated features. Hashing matching can only deal with middle-scale scenes and is not capable of large-scale scenes. In this paper, we propose a new feature tacking method working in a parallel manner rather than in a single thread scheme. Our method consists of steps of keypoint detection, descriptor computing, descriptor matching by parallel k -nearest neighbor (Parallel-KNN) search, and outlier rejecting. This method is able to rapidly match a big volume of keypoints and avoids to consume high computation time, then yielding a set of correct correspondences. We demonstrate and evaluate the proposed method on several challenging benchmark datasets, including those with highly repeated features, and compare to the state-of-the-art methods. The experimental results indicate that our method outperforms the compared methods in both efficiency and effectiveness." @default.
- W2943065845 created "2019-05-09" @default.
- W2943065845 creator A5008291669 @default.
- W2943065845 creator A5024101307 @default.
- W2943065845 creator A5048751740 @default.
- W2943065845 creator A5070592633 @default.
- W2943065845 creator A5071321197 @default.
- W2943065845 creator A5071697996 @default.
- W2943065845 creator A5089407824 @default.
- W2943065845 date "2019-01-01" @default.
- W2943065845 modified "2023-10-14" @default.
- W2943065845 title "Parallel K Nearest Neighbor Matching for 3D Reconstruction" @default.
- W2943065845 cites W1606766208 @default.
- W2943065845 cites W1836794077 @default.
- W2943065845 cites W1981429121 @default.
- W2943065845 cites W1981438696 @default.
- W2943065845 cites W1985238052 @default.
- W2943065845 cites W1993336109 @default.
- W2943065845 cites W2001790138 @default.
- W2943065845 cites W2007864137 @default.
- W2943065845 cites W2010642153 @default.
- W2943065845 cites W2035435214 @default.
- W2943065845 cites W2057068800 @default.
- W2943065845 cites W2060599314 @default.
- W2943065845 cites W2060772243 @default.
- W2943065845 cites W2079376982 @default.
- W2943065845 cites W2084613528 @default.
- W2943065845 cites W2087952184 @default.
- W2943065845 cites W2105303354 @default.
- W2943065845 cites W2106199912 @default.
- W2943065845 cites W2115049345 @default.
- W2943065845 cites W2117228865 @default.
- W2943065845 cites W2135209101 @default.
- W2943065845 cites W2151103935 @default.
- W2943065845 cites W2151290401 @default.
- W2943065845 cites W2156598602 @default.
- W2943065845 cites W2161986303 @default.
- W2943065845 cites W2169633581 @default.
- W2943065845 cites W2200104559 @default.
- W2943065845 cites W2214540232 @default.
- W2943065845 cites W2217143704 @default.
- W2943065845 cites W2288572574 @default.
- W2943065845 cites W2329267147 @default.
- W2943065845 cites W2461005315 @default.
- W2943065845 cites W2462793074 @default.
- W2943065845 cites W2471962767 @default.
- W2943065845 cites W2478778938 @default.
- W2943065845 cites W2498620878 @default.
- W2943065845 cites W2512749302 @default.
- W2943065845 cites W2519897181 @default.
- W2943065845 cites W2560644659 @default.
- W2943065845 cites W2579352318 @default.
- W2943065845 cites W2582402548 @default.
- W2943065845 cites W2589310369 @default.
- W2943065845 cites W2599692954 @default.
- W2943065845 cites W2605553408 @default.
- W2943065845 cites W2605778869 @default.
- W2943065845 cites W2610614679 @default.
- W2943065845 cites W2614891930 @default.
- W2943065845 cites W2621056361 @default.
- W2943065845 cites W2727382535 @default.
- W2943065845 cites W2743971569 @default.
- W2943065845 cites W2753893487 @default.
- W2943065845 cites W2754925132 @default.
- W2943065845 cites W2769419636 @default.
- W2943065845 cites W2769969171 @default.
- W2943065845 cites W2777923808 @default.
- W2943065845 cites W2788608285 @default.
- W2943065845 cites W2807555794 @default.
- W2943065845 cites W2889389533 @default.
- W2943065845 cites W2891651041 @default.
- W2943065845 cites W2894900504 @default.
- W2943065845 cites W2895935978 @default.
- W2943065845 cites W2899831632 @default.
- W2943065845 cites W2963221299 @default.
- W2943065845 cites W2964158430 @default.
- W2943065845 cites W4247250903 @default.
- W2943065845 cites W4250459450 @default.
- W2943065845 doi "https://doi.org/10.1109/access.2019.2912647" @default.
- W2943065845 hasPublicationYear "2019" @default.
- W2943065845 type Work @default.
- W2943065845 sameAs 2943065845 @default.
- W2943065845 citedByCount "6" @default.
- W2943065845 countsByYear W29430658452019 @default.
- W2943065845 countsByYear W29430658452021 @default.
- W2943065845 countsByYear W29430658452022 @default.
- W2943065845 crossrefType "journal-article" @default.
- W2943065845 hasAuthorship W2943065845A5008291669 @default.
- W2943065845 hasAuthorship W2943065845A5024101307 @default.
- W2943065845 hasAuthorship W2943065845A5048751740 @default.
- W2943065845 hasAuthorship W2943065845A5070592633 @default.
- W2943065845 hasAuthorship W2943065845A5071321197 @default.
- W2943065845 hasAuthorship W2943065845A5071697996 @default.
- W2943065845 hasAuthorship W2943065845A5089407824 @default.
- W2943065845 hasBestOaLocation W29430658451 @default.
- W2943065845 hasConcept C113238511 @default.
- W2943065845 hasConcept C131979681 @default.
- W2943065845 hasConcept C138885662 @default.