Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943227603> ?p ?o ?g. }
- W2943227603 endingPage "1816" @default.
- W2943227603 startingPage "1816" @default.
- W2943227603 abstract "Recent developments in Convolutional Neural Networks (CNNs) have allowed for the achievement of solid advances in semantic segmentation of high-resolution remote sensing (HRRS) images. Nevertheless, the problems of poor classification of small objects and unclear boundaries caused by the characteristics of the HRRS image data have not been fully considered by previous works. To tackle these challenging problems, we propose an improved semantic segmentation neural network, which adopts dilated convolution, a fully connected (FC) fusion path and pre-trained encoder for the semantic segmentation task of HRRS imagery. The network is built with the computationally-efficient DeepLabv3 architecture, with added Augmented Atrous Spatial Pyramid Pool and FC Fusion Path layers. Dilated convolution enlarges the receptive field of feature points without decreasing the feature map resolution. The improved neural network architecture enhances HRRS image segmentation, reaching the classification accuracy of 91%, and the precision of recognition of small objects is improved. The applicability of the improved model to the remote sensing image segmentation task is verified." @default.
- W2943227603 created "2019-05-09" @default.
- W2943227603 creator A5003799076 @default.
- W2943227603 creator A5016267473 @default.
- W2943227603 creator A5017882557 @default.
- W2943227603 creator A5019534297 @default.
- W2943227603 creator A5042653526 @default.
- W2943227603 creator A5074535695 @default.
- W2943227603 creator A5076096942 @default.
- W2943227603 date "2019-05-01" @default.
- W2943227603 modified "2023-10-03" @default.
- W2943227603 title "Fully Convolutional Neural Network with Augmented Atrous Spatial Pyramid Pool and Fully Connected Fusion Path for High Resolution Remote Sensing Image Segmentation" @default.
- W2943227603 cites W1986217031 @default.
- W2943227603 cites W1987784598 @default.
- W2943227603 cites W1989881905 @default.
- W2943227603 cites W2108598243 @default.
- W2943227603 cites W2305745203 @default.
- W2943227603 cites W2395611524 @default.
- W2943227603 cites W2412782625 @default.
- W2943227603 cites W2538244214 @default.
- W2943227603 cites W2565813159 @default.
- W2943227603 cites W2579152745 @default.
- W2943227603 cites W2604086375 @default.
- W2943227603 cites W2610528085 @default.
- W2943227603 cites W2616755213 @default.
- W2943227603 cites W2774989306 @default.
- W2943227603 cites W2780843001 @default.
- W2943227603 cites W2786492053 @default.
- W2943227603 cites W2793268137 @default.
- W2943227603 cites W2794809810 @default.
- W2943227603 cites W2795635230 @default.
- W2943227603 cites W2802636049 @default.
- W2943227603 cites W2810451272 @default.
- W2943227603 cites W2886397424 @default.
- W2943227603 cites W2889077652 @default.
- W2943227603 cites W2890319410 @default.
- W2943227603 cites W2891367133 @default.
- W2943227603 cites W2897378705 @default.
- W2943227603 cites W2897936062 @default.
- W2943227603 cites W2900518108 @default.
- W2943227603 cites W2902168190 @default.
- W2943227603 cites W2908020915 @default.
- W2943227603 cites W2912514498 @default.
- W2943227603 cites W2914922193 @default.
- W2943227603 cites W2915971115 @default.
- W2943227603 cites W2917495457 @default.
- W2943227603 cites W2922015078 @default.
- W2943227603 cites W2932442738 @default.
- W2943227603 cites W2963859992 @default.
- W2943227603 cites W2963881378 @default.
- W2943227603 cites W3101896960 @default.
- W2943227603 cites W3122507398 @default.
- W2943227603 doi "https://doi.org/10.3390/app9091816" @default.
- W2943227603 hasPublicationYear "2019" @default.
- W2943227603 type Work @default.
- W2943227603 sameAs 2943227603 @default.
- W2943227603 citedByCount "55" @default.
- W2943227603 countsByYear W29432276032019 @default.
- W2943227603 countsByYear W29432276032020 @default.
- W2943227603 countsByYear W29432276032021 @default.
- W2943227603 countsByYear W29432276032022 @default.
- W2943227603 countsByYear W29432276032023 @default.
- W2943227603 crossrefType "journal-article" @default.
- W2943227603 hasAuthorship W2943227603A5003799076 @default.
- W2943227603 hasAuthorship W2943227603A5016267473 @default.
- W2943227603 hasAuthorship W2943227603A5017882557 @default.
- W2943227603 hasAuthorship W2943227603A5019534297 @default.
- W2943227603 hasAuthorship W2943227603A5042653526 @default.
- W2943227603 hasAuthorship W2943227603A5074535695 @default.
- W2943227603 hasAuthorship W2943227603A5076096942 @default.
- W2943227603 hasBestOaLocation W29432276031 @default.
- W2943227603 hasConcept C111919701 @default.
- W2943227603 hasConcept C118505674 @default.
- W2943227603 hasConcept C124504099 @default.
- W2943227603 hasConcept C138885662 @default.
- W2943227603 hasConcept C142575187 @default.
- W2943227603 hasConcept C153180895 @default.
- W2943227603 hasConcept C154945302 @default.
- W2943227603 hasConcept C199360897 @default.
- W2943227603 hasConcept C2524010 @default.
- W2943227603 hasConcept C2776401178 @default.
- W2943227603 hasConcept C2777735758 @default.
- W2943227603 hasConcept C31972630 @default.
- W2943227603 hasConcept C33923547 @default.
- W2943227603 hasConcept C41008148 @default.
- W2943227603 hasConcept C41895202 @default.
- W2943227603 hasConcept C45347329 @default.
- W2943227603 hasConcept C50644808 @default.
- W2943227603 hasConcept C65885262 @default.
- W2943227603 hasConcept C81363708 @default.
- W2943227603 hasConcept C89600930 @default.
- W2943227603 hasConceptScore W2943227603C111919701 @default.
- W2943227603 hasConceptScore W2943227603C118505674 @default.
- W2943227603 hasConceptScore W2943227603C124504099 @default.
- W2943227603 hasConceptScore W2943227603C138885662 @default.
- W2943227603 hasConceptScore W2943227603C142575187 @default.
- W2943227603 hasConceptScore W2943227603C153180895 @default.
- W2943227603 hasConceptScore W2943227603C154945302 @default.