Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943283904> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2943283904 endingPage "1707" @default.
- W2943283904 startingPage "1707" @default.
- W2943283904 abstract "An aroma-based method for distinguishing different grades of Nongxiang Tieguanyin was explored by taking special grade (K110) and 1-4 grades (K101, K102, K103, and K104) of this tea as samples. Tea samples were analyzed by gas chromatography-mass spectrometry (GC-MS) combined with chemometrics. Results showed differences in the types and relative contents of aroma components among different grades of Nongxiang Tieguanyin tea. In the principal component analysis (PCA) scoring plot, except for K102 and K103, tea samples of different grades were distributed in different regions. Components satisfying variable important for the projection (VIP) > 1 and peak areas with significant differences (p < 0.05) among different tea grades were screened. Finally, 18 differential variables were screened out from 143 volatiles. The clustering results of these variables were consistent with those of PCA. K102 and K103 were initially clustered into one group and then clustered with K101, K110, and K104 in turn. The clear PCA separation of these samples and uniform hierarchical cluster analysis (HCA) clustering results suggests that GC-MS coupled with chemometrics analysis is a valid and accurate approach for discriminating different grades of Nongxiang Tieguanyin. The screened differential variables could represent a difference in aroma quality among five grades of Nongxiang Tieguanyin tea. Clear rules between peak area and the grade were also observed in some differential variables. 1-Ethylpyrrole and unknown-32 were positively correlated with grade. 2-Methylfuran, 2-ethylfuran, 2-methylidenecyclopentan-1-ol, mesityl oxide, 2-amylfuran, and D-limonene were negatively correlated with grade. The peak areas of methyl acetate, dimethyl sulfide, 6-methylhept-5-en-2-one, and (Z)-β-ocimene initially decreased but then increased with declining grade. The toluene content was especially high in K104 but only a negligible difference was observed among other grades. This study provides a potential method for differentiating Nongxiang Tieguanyin teas of different grades based on aroma. Unknown samples could be classified by comparison of their spatial distribution with those of known standard samples in PCA or HCA, as well as the peak area differences of differential variables between unknown samples and known standard samples." @default.
- W2943283904 created "2019-05-09" @default.
- W2943283904 creator A5005151296 @default.
- W2943283904 creator A5056848609 @default.
- W2943283904 creator A5084990502 @default.
- W2943283904 date "2019-05-02" @default.
- W2943283904 modified "2023-10-14" @default.
- W2943283904 title "Exploration of a Method of Distinguishing Different Nongxiang Tieguanyin Tea Grades Based on Aroma Determined by GC-MS Combined with Chemometrics" @default.
- W2943283904 cites W1529603554 @default.
- W2943283904 cites W1769532562 @default.
- W2943283904 cites W1874388805 @default.
- W2943283904 cites W1984195070 @default.
- W2943283904 cites W2016692232 @default.
- W2943283904 cites W2024558732 @default.
- W2943283904 cites W2053943141 @default.
- W2943283904 cites W2122841949 @default.
- W2943283904 cites W2533861979 @default.
- W2943283904 cites W2551190278 @default.
- W2943283904 cites W2736103772 @default.
- W2943283904 cites W2750348575 @default.
- W2943283904 cites W2770204558 @default.
- W2943283904 cites W2775545376 @default.
- W2943283904 cites W2803908551 @default.
- W2943283904 cites W2804591698 @default.
- W2943283904 cites W2806594710 @default.
- W2943283904 cites W2884064014 @default.
- W2943283904 cites W2888509256 @default.
- W2943283904 cites W2889367506 @default.
- W2943283904 doi "https://doi.org/10.3390/molecules24091707" @default.
- W2943283904 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6539088" @default.
- W2943283904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31052526" @default.
- W2943283904 hasPublicationYear "2019" @default.
- W2943283904 type Work @default.
- W2943283904 sameAs 2943283904 @default.
- W2943283904 citedByCount "21" @default.
- W2943283904 countsByYear W29432839042020 @default.
- W2943283904 countsByYear W29432839042021 @default.
- W2943283904 countsByYear W29432839042022 @default.
- W2943283904 countsByYear W29432839042023 @default.
- W2943283904 crossrefType "journal-article" @default.
- W2943283904 hasAuthorship W2943283904A5005151296 @default.
- W2943283904 hasAuthorship W2943283904A5056848609 @default.
- W2943283904 hasAuthorship W2943283904A5084990502 @default.
- W2943283904 hasBestOaLocation W29432839041 @default.
- W2943283904 hasConcept C105795698 @default.
- W2943283904 hasConcept C151304367 @default.
- W2943283904 hasConcept C162356407 @default.
- W2943283904 hasConcept C185592680 @default.
- W2943283904 hasConcept C205345274 @default.
- W2943283904 hasConcept C27438332 @default.
- W2943283904 hasConcept C2780563676 @default.
- W2943283904 hasConcept C31903555 @default.
- W2943283904 hasConcept C33923547 @default.
- W2943283904 hasConcept C43617362 @default.
- W2943283904 hasConcept C73555534 @default.
- W2943283904 hasConcept C92835128 @default.
- W2943283904 hasConceptScore W2943283904C105795698 @default.
- W2943283904 hasConceptScore W2943283904C151304367 @default.
- W2943283904 hasConceptScore W2943283904C162356407 @default.
- W2943283904 hasConceptScore W2943283904C185592680 @default.
- W2943283904 hasConceptScore W2943283904C205345274 @default.
- W2943283904 hasConceptScore W2943283904C27438332 @default.
- W2943283904 hasConceptScore W2943283904C2780563676 @default.
- W2943283904 hasConceptScore W2943283904C31903555 @default.
- W2943283904 hasConceptScore W2943283904C33923547 @default.
- W2943283904 hasConceptScore W2943283904C43617362 @default.
- W2943283904 hasConceptScore W2943283904C73555534 @default.
- W2943283904 hasConceptScore W2943283904C92835128 @default.
- W2943283904 hasIssue "9" @default.
- W2943283904 hasLocation W29432839041 @default.
- W2943283904 hasLocation W29432839042 @default.
- W2943283904 hasLocation W29432839043 @default.
- W2943283904 hasLocation W29432839044 @default.
- W2943283904 hasOpenAccess W2943283904 @default.
- W2943283904 hasPrimaryLocation W29432839041 @default.
- W2943283904 hasRelatedWork W2034832342 @default.
- W2943283904 hasRelatedWork W2093210818 @default.
- W2943283904 hasRelatedWork W2128448229 @default.
- W2943283904 hasRelatedWork W2349517642 @default.
- W2943283904 hasRelatedWork W2350990509 @default.
- W2943283904 hasRelatedWork W2363686923 @default.
- W2943283904 hasRelatedWork W2369918784 @default.
- W2943283904 hasRelatedWork W2373050638 @default.
- W2943283904 hasRelatedWork W3088345466 @default.
- W2943283904 hasRelatedWork W1654395363 @default.
- W2943283904 hasVolume "24" @default.
- W2943283904 isParatext "false" @default.
- W2943283904 isRetracted "false" @default.
- W2943283904 magId "2943283904" @default.
- W2943283904 workType "article" @default.