Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943334041> ?p ?o ?g. }
- W2943334041 endingPage "360" @default.
- W2943334041 startingPage "349" @default.
- W2943334041 abstract "The introduction of redox mediators to lithium–oxygen batteries has resulted in a recent breakthrough in overcoming their limitations, hastening the realization of future battery systems. Redox mediators differ from conventional solid catalysts in that they convert the series of Li2O2-related electrochemical reactions into simple chemical reactions, thus circumventing the issues associated with side reactions. Remarkable improvements in the electrochemical properties such as energy efficiency, power capability, and coulombic efficiency have been lately demonstrated in lithium–oxygen battery performance with the aid of redox mediators. Optimizing catalytic performance and stability of redox mediators in the cell systems are issues remaining to be addressed. Despite the exceptionally large theoretical energy density of lithium–oxygen batteries, their high charging overpotential and poor cycle life are critical limitations preventing their commercialization. To overcome these bottlenecks, redox mediators (i.e., soluble catalysts) that facilitate the electrochemical reaction between lithium and oxygen have attracted tremendous research interest. A wide variety of materials have been reported as promising redox mediators for lithium–oxygen batteries, successfully enhancing energy efficiency and cycle stability. However, their overall performance still requires further improvement. Herein, recent progress on the use of redox mediators for lithium–oxygen batteries are reviewed, with a particular focus on improvements in energy efficiency, power capability, and coulombic efficiency. In addition, the aspects of redox mediators requiring immediate optimization are discussed together with future research directions. Despite the exceptionally large theoretical energy density of lithium–oxygen batteries, their high charging overpotential and poor cycle life are critical limitations preventing their commercialization. To overcome these bottlenecks, redox mediators (i.e., soluble catalysts) that facilitate the electrochemical reaction between lithium and oxygen have attracted tremendous research interest. A wide variety of materials have been reported as promising redox mediators for lithium–oxygen batteries, successfully enhancing energy efficiency and cycle stability. However, their overall performance still requires further improvement. Herein, recent progress on the use of redox mediators for lithium–oxygen batteries are reviewed, with a particular focus on improvements in energy efficiency, power capability, and coulombic efficiency. In addition, the aspects of redox mediators requiring immediate optimization are discussed together with future research directions. a quantitative measure for the tendency to accept electron pairs from donors or electrophilic properties of a solvent, whose counterpart is donor number. the ratio of available discharge capacity to charge capacity. the ratio of the electric permeability of the material to the electric permeability of free space, a parameter of a solvent regarding its capability to dissolve ionized solutes. the percentage ratio of energy recovered during discharge to energy input during charge of batteries. the interaction of a sigma orbital with an adjacent empty or partially filled nonbonding or antibonding σ or π orbital, which results in an increased stability of the molecule. an electron transfer during which electron donor and acceptor are chemically bonded (e.g., absorption, ligand bridging). The behavior of chemical bonding significantly affects the electron transfer rate. the minimum energy required to remove the most loosely bound electron of an isolated neutral gaseous atom or molecule. a theory to explain the rate of electron transfer reaction between electron donor and electron acceptor. A major aspect is that the electron transfer rate is dependent on the thermodynamic driving force (difference in redox potentials). an electron transfer during which electron donor and acceptor remains separate and intact. The electron transfer rate is dependent on the thermodynamic driving force. a collective term for certain phenomena by which electrode potential deviates from equilibrium potential. a capability of the energy storage system operating at high current rates. a measure of the potential of chemical species to extract electrons (oxidation) or acquire electrons (reduction). In general, redox potential of species is measured against a reference electrode. a technique for measuring a behavior of a local electrochemical reaction occurring at interfaces; liquid/gas, liquid/liquid, and liquid/solid." @default.
- W2943334041 created "2019-05-09" @default.
- W2943334041 creator A5007457176 @default.
- W2943334041 creator A5010802792 @default.
- W2943334041 creator A5012683959 @default.
- W2943334041 creator A5073090248 @default.
- W2943334041 creator A5089801384 @default.
- W2943334041 date "2019-06-01" @default.
- W2943334041 modified "2023-10-01" @default.
- W2943334041 title "Redox Mediators: A Solution for Advanced Lithium–Oxygen Batteries" @default.
- W2943334041 cites W1852199309 @default.
- W2943334041 cites W1935840347 @default.
- W2943334041 cites W1973888530 @default.
- W2943334041 cites W1983043957 @default.
- W2943334041 cites W1986647637 @default.
- W2943334041 cites W1993360176 @default.
- W2943334041 cites W1998638656 @default.
- W2943334041 cites W2002120753 @default.
- W2943334041 cites W2008788642 @default.
- W2943334041 cites W2015693422 @default.
- W2943334041 cites W2017502745 @default.
- W2943334041 cites W2023665497 @default.
- W2943334041 cites W2031904472 @default.
- W2943334041 cites W2062710357 @default.
- W2943334041 cites W2066584590 @default.
- W2943334041 cites W2079085922 @default.
- W2943334041 cites W2094708170 @default.
- W2943334041 cites W2105214073 @default.
- W2943334041 cites W2124845074 @default.
- W2943334041 cites W2126323174 @default.
- W2943334041 cites W2134392863 @default.
- W2943334041 cites W2146253088 @default.
- W2943334041 cites W2151207643 @default.
- W2943334041 cites W2159411932 @default.
- W2943334041 cites W2162036593 @default.
- W2943334041 cites W2189339971 @default.
- W2943334041 cites W2201742974 @default.
- W2943334041 cites W2227991951 @default.
- W2943334041 cites W2273649639 @default.
- W2943334041 cites W2289183488 @default.
- W2943334041 cites W2305593855 @default.
- W2943334041 cites W2314295709 @default.
- W2943334041 cites W2316837173 @default.
- W2943334041 cites W2318536044 @default.
- W2943334041 cites W2319030935 @default.
- W2943334041 cites W2329111659 @default.
- W2943334041 cites W2329533199 @default.
- W2943334041 cites W2331680499 @default.
- W2943334041 cites W2334739404 @default.
- W2943334041 cites W2339575069 @default.
- W2943334041 cites W2342475091 @default.
- W2943334041 cites W2345707219 @default.
- W2943334041 cites W2401405239 @default.
- W2943334041 cites W2405772248 @default.
- W2943334041 cites W2412862768 @default.
- W2943334041 cites W2510611986 @default.
- W2943334041 cites W2515563138 @default.
- W2943334041 cites W2520292183 @default.
- W2943334041 cites W2522231714 @default.
- W2943334041 cites W2522619852 @default.
- W2943334041 cites W2538079746 @default.
- W2943334041 cites W2560144633 @default.
- W2943334041 cites W2560181964 @default.
- W2943334041 cites W2560578837 @default.
- W2943334041 cites W2575529205 @default.
- W2943334041 cites W2605913414 @default.
- W2943334041 cites W2613490376 @default.
- W2943334041 cites W2613985548 @default.
- W2943334041 cites W2617141049 @default.
- W2943334041 cites W2734537840 @default.
- W2943334041 cites W2740714055 @default.
- W2943334041 cites W2741445709 @default.
- W2943334041 cites W2748589935 @default.
- W2943334041 cites W2755697634 @default.
- W2943334041 cites W2780948826 @default.
- W2943334041 cites W2783693642 @default.
- W2943334041 cites W2784126342 @default.
- W2943334041 cites W2791495720 @default.
- W2943334041 cites W2884479674 @default.
- W2943334041 cites W2884841237 @default.
- W2943334041 cites W2893769733 @default.
- W2943334041 cites W2896705345 @default.
- W2943334041 cites W2904882395 @default.
- W2943334041 cites W2913829972 @default.
- W2943334041 cites W3100411192 @default.
- W2943334041 cites W4250923585 @default.
- W2943334041 cites W4256570959 @default.
- W2943334041 doi "https://doi.org/10.1016/j.trechm.2019.03.016" @default.
- W2943334041 hasPublicationYear "2019" @default.
- W2943334041 type Work @default.
- W2943334041 sameAs 2943334041 @default.
- W2943334041 citedByCount "46" @default.
- W2943334041 countsByYear W29433340412019 @default.
- W2943334041 countsByYear W29433340412020 @default.
- W2943334041 countsByYear W29433340412021 @default.
- W2943334041 countsByYear W29433340412022 @default.
- W2943334041 countsByYear W29433340412023 @default.
- W2943334041 crossrefType "journal-article" @default.