Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943368907> ?p ?o ?g. }
- W2943368907 endingPage "107" @default.
- W2943368907 startingPage "98" @default.
- W2943368907 abstract "In the last few decades, spectroscopic techniques such as near-infrared (NIR) and UV/vis spectroscopies have gained wide applications. As a result, various soft sensors have been developed to predict sample properties from its spectroscopic readings. Because the readings at different wavelengths are highly correlated, it has been shown that variable selection could significantly improve a soft sensor’s prediction performance and reduce the model complexity. Currently, almost all variable selection methods focus on how to select the variables (i.e., wavelengths or wavelength segments) that are strongly correlated with the dependent variable to improve the prediction performance. Although many successful applications have been reported, such variable selection methods do have their limitations, such as high sensitivity to the choice of training data, and deteriorated performance when testing on new samples. One possible reason is the removal of useful wavelengths or segments of wavelengths during the calibration process, which could be “tilted” to overfit or capture the noise or unknown disturbances contained in the calibration data. As a result, the model prediction performance may deteriorate significantly when the model is extrapolated or applied to new samples. To address this limitation, we propose a feature-based soft sensor approach utilizing statistics pattern analysis (SPA). Instead of selecting certain wavelengths or wavelength segments, the SPA-based method considers the whole spectrum which is divided into segments, and extracts different features over each spectrum segment to build the soft sensor. In other words, the SPA model contains the complete information from the full spectrum without any selection or removal, which we believe is the main reason for the high robustness of the SPA-based method. In addition, we propose a Monte Carlo validation and testing (MCVT) procedure and three MCVT-based performance indices for consistent and fair comparison of different soft sensor methods across different datasets. The MCVT procedure and indices are generally applicable for model comparison in other applications. Four case studies are presented to demonstrate the performance of the feature-based soft sensor and to compare it with a full partial least squares (PLS), a least absolute shrinkage and selection operator (Lasso), and a synergy interval PLS (SiPLS) based models following the proposed MCVT procedure. In addition, we examine the potential of kernel PLS (KPLS) based soft sensor approaches, examine their performances, and discuss their pros and cons." @default.
- W2943368907 created "2019-05-09" @default.
- W2943368907 creator A5018244700 @default.
- W2943368907 creator A5050980626 @default.
- W2943368907 creator A5072979181 @default.
- W2943368907 date "2019-06-01" @default.
- W2943368907 modified "2023-10-16" @default.
- W2943368907 title "A feature-based soft sensor for spectroscopic data analysis" @default.
- W2943368907 cites W1965747377 @default.
- W2943368907 cites W1965786603 @default.
- W2943368907 cites W1986900951 @default.
- W2943368907 cites W1994505190 @default.
- W2943368907 cites W2000651380 @default.
- W2943368907 cites W2006676204 @default.
- W2943368907 cites W2007808016 @default.
- W2943368907 cites W2021754455 @default.
- W2943368907 cites W2027870566 @default.
- W2943368907 cites W2031023273 @default.
- W2943368907 cites W2035777719 @default.
- W2943368907 cites W2037226761 @default.
- W2943368907 cites W2039800894 @default.
- W2943368907 cites W2042440350 @default.
- W2943368907 cites W2050378178 @default.
- W2943368907 cites W2063255184 @default.
- W2943368907 cites W2064507803 @default.
- W2943368907 cites W2065636071 @default.
- W2943368907 cites W2066579998 @default.
- W2943368907 cites W2079352331 @default.
- W2943368907 cites W2079677565 @default.
- W2943368907 cites W2089468765 @default.
- W2943368907 cites W2098722265 @default.
- W2943368907 cites W2099254024 @default.
- W2943368907 cites W2102123872 @default.
- W2943368907 cites W2126174145 @default.
- W2943368907 cites W2140095548 @default.
- W2943368907 cites W2145159661 @default.
- W2943368907 cites W2148028862 @default.
- W2943368907 cites W2158863190 @default.
- W2943368907 cites W2201252546 @default.
- W2943368907 cites W2327959768 @default.
- W2943368907 cites W2594255343 @default.
- W2943368907 doi "https://doi.org/10.1016/j.jprocont.2019.03.016" @default.
- W2943368907 hasPublicationYear "2019" @default.
- W2943368907 type Work @default.
- W2943368907 sameAs 2943368907 @default.
- W2943368907 citedByCount "22" @default.
- W2943368907 countsByYear W29433689072019 @default.
- W2943368907 countsByYear W29433689072020 @default.
- W2943368907 countsByYear W29433689072021 @default.
- W2943368907 countsByYear W29433689072022 @default.
- W2943368907 countsByYear W29433689072023 @default.
- W2943368907 crossrefType "journal-article" @default.
- W2943368907 hasAuthorship W2943368907A5018244700 @default.
- W2943368907 hasAuthorship W2943368907A5050980626 @default.
- W2943368907 hasAuthorship W2943368907A5072979181 @default.
- W2943368907 hasBestOaLocation W29433689071 @default.
- W2943368907 hasConcept C105795698 @default.
- W2943368907 hasConcept C111919701 @default.
- W2943368907 hasConcept C115575686 @default.
- W2943368907 hasConcept C115961682 @default.
- W2943368907 hasConcept C120665830 @default.
- W2943368907 hasConcept C121332964 @default.
- W2943368907 hasConcept C127413603 @default.
- W2943368907 hasConcept C134306372 @default.
- W2943368907 hasConcept C138885662 @default.
- W2943368907 hasConcept C148483581 @default.
- W2943368907 hasConcept C153180895 @default.
- W2943368907 hasConcept C154945302 @default.
- W2943368907 hasConcept C165838908 @default.
- W2943368907 hasConcept C182365436 @default.
- W2943368907 hasConcept C186060115 @default.
- W2943368907 hasConcept C192209626 @default.
- W2943368907 hasConcept C198531522 @default.
- W2943368907 hasConcept C21200559 @default.
- W2943368907 hasConcept C22019652 @default.
- W2943368907 hasConcept C24326235 @default.
- W2943368907 hasConcept C2776401178 @default.
- W2943368907 hasConcept C33923547 @default.
- W2943368907 hasConcept C41008148 @default.
- W2943368907 hasConcept C41895202 @default.
- W2943368907 hasConcept C43571822 @default.
- W2943368907 hasConcept C50644808 @default.
- W2943368907 hasConcept C6260449 @default.
- W2943368907 hasConcept C81917197 @default.
- W2943368907 hasConcept C86803240 @default.
- W2943368907 hasConcept C97355855 @default.
- W2943368907 hasConcept C98045186 @default.
- W2943368907 hasConcept C99498987 @default.
- W2943368907 hasConceptScore W2943368907C105795698 @default.
- W2943368907 hasConceptScore W2943368907C111919701 @default.
- W2943368907 hasConceptScore W2943368907C115575686 @default.
- W2943368907 hasConceptScore W2943368907C115961682 @default.
- W2943368907 hasConceptScore W2943368907C120665830 @default.
- W2943368907 hasConceptScore W2943368907C121332964 @default.
- W2943368907 hasConceptScore W2943368907C127413603 @default.
- W2943368907 hasConceptScore W2943368907C134306372 @default.
- W2943368907 hasConceptScore W2943368907C138885662 @default.
- W2943368907 hasConceptScore W2943368907C148483581 @default.