Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943397166> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2943397166 abstract "Nowadays intrusion detection systems (IDS) plays an important role in organizations since there are a ton of cyber attacks which affect to security issues: confidential, integrity, availability. Currently, there are many open source tools for intrusion detection but they have different syntax of rules and signatures which cannot be used across different tools. In this paper, we propose an intrusion detection technique by using deep learning model which can classify different types of attacks without human-generated rules or signature mapping. We apply the supervised deep learning technology which are RNN, Stacked RNN, and CNN to classify five popular types of attacks by using Keras on the top of TensorFlow. Our technique requires only the packet header information and does not need any user payload. To verify the performance, we use MAWI dataset which are pcap files and compare our results with Snort IDS. Due to the lack of user payloads, the results show that Snort could not detect the network scan attack via ICMP and UDP. Meanwhile, we prove that RNN, Stacked RNN, and CNN can be used to classify attack for Port scan, Network scan via ICMP, Network scan via UDP, Network scan via TCP, and DoS attack with high accuracy. RNN delivers the highest accuracy." @default.
- W2943397166 created "2019-05-09" @default.
- W2943397166 creator A5084908618 @default.
- W2943397166 creator A5085019795 @default.
- W2943397166 date "2019-02-01" @default.
- W2943397166 modified "2023-10-02" @default.
- W2943397166 title "Intrusion Detection by Deep Learning with TensorFlow" @default.
- W2943397166 cites W2052667194 @default.
- W2943397166 cites W2078910959 @default.
- W2943397166 cites W2558531213 @default.
- W2943397166 cites W2755607333 @default.
- W2943397166 cites W2762776925 @default.
- W2943397166 cites W2765181145 @default.
- W2943397166 cites W2775103799 @default.
- W2943397166 cites W2777342313 @default.
- W2943397166 cites W2783221851 @default.
- W2943397166 doi "https://doi.org/10.23919/icact.2019.8701969" @default.
- W2943397166 hasPublicationYear "2019" @default.
- W2943397166 type Work @default.
- W2943397166 sameAs 2943397166 @default.
- W2943397166 citedByCount "25" @default.
- W2943397166 countsByYear W29433971662019 @default.
- W2943397166 countsByYear W29433971662020 @default.
- W2943397166 countsByYear W29433971662021 @default.
- W2943397166 countsByYear W29433971662022 @default.
- W2943397166 countsByYear W29433971662023 @default.
- W2943397166 crossrefType "proceedings-article" @default.
- W2943397166 hasAuthorship W2943397166A5084908618 @default.
- W2943397166 hasAuthorship W2943397166A5085019795 @default.
- W2943397166 hasConcept C108583219 @default.
- W2943397166 hasConcept C119857082 @default.
- W2943397166 hasConcept C124101348 @default.
- W2943397166 hasConcept C134066672 @default.
- W2943397166 hasConcept C147168706 @default.
- W2943397166 hasConcept C154945302 @default.
- W2943397166 hasConcept C158379750 @default.
- W2943397166 hasConcept C182590292 @default.
- W2943397166 hasConcept C195219913 @default.
- W2943397166 hasConcept C204679922 @default.
- W2943397166 hasConcept C31258907 @default.
- W2943397166 hasConcept C35525427 @default.
- W2943397166 hasConcept C41008148 @default.
- W2943397166 hasConcept C48105269 @default.
- W2943397166 hasConcept C50644808 @default.
- W2943397166 hasConceptScore W2943397166C108583219 @default.
- W2943397166 hasConceptScore W2943397166C119857082 @default.
- W2943397166 hasConceptScore W2943397166C124101348 @default.
- W2943397166 hasConceptScore W2943397166C134066672 @default.
- W2943397166 hasConceptScore W2943397166C147168706 @default.
- W2943397166 hasConceptScore W2943397166C154945302 @default.
- W2943397166 hasConceptScore W2943397166C158379750 @default.
- W2943397166 hasConceptScore W2943397166C182590292 @default.
- W2943397166 hasConceptScore W2943397166C195219913 @default.
- W2943397166 hasConceptScore W2943397166C204679922 @default.
- W2943397166 hasConceptScore W2943397166C31258907 @default.
- W2943397166 hasConceptScore W2943397166C35525427 @default.
- W2943397166 hasConceptScore W2943397166C41008148 @default.
- W2943397166 hasConceptScore W2943397166C48105269 @default.
- W2943397166 hasConceptScore W2943397166C50644808 @default.
- W2943397166 hasLocation W29433971661 @default.
- W2943397166 hasOpenAccess W2943397166 @default.
- W2943397166 hasPrimaryLocation W29433971661 @default.
- W2943397166 hasRelatedWork W1523103140 @default.
- W2943397166 hasRelatedWork W1971040605 @default.
- W2943397166 hasRelatedWork W2015896281 @default.
- W2943397166 hasRelatedWork W2143950972 @default.
- W2943397166 hasRelatedWork W2593889512 @default.
- W2943397166 hasRelatedWork W2896435359 @default.
- W2943397166 hasRelatedWork W2941716987 @default.
- W2943397166 hasRelatedWork W2955240225 @default.
- W2943397166 hasRelatedWork W2988433590 @default.
- W2943397166 hasRelatedWork W4250738563 @default.
- W2943397166 isParatext "false" @default.
- W2943397166 isRetracted "false" @default.
- W2943397166 magId "2943397166" @default.
- W2943397166 workType "article" @default.