Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943452358> ?p ?o ?g. }
- W2943452358 abstract "Surface electromyographic (EMG) recordings collected during the performance of functional evaluations allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to accurate results only when the assessment is carried out by an EMG expert. A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG recordings collected during the performance of functional evaluations in 62 subjects (22 to 61 years old) were used to develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study (i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar hardware removal) to assess the clinical suitability of the proposed technique. The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95% confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert. When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity patterns associated with persistent back pain following instrumented lumbar fusion. The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is suitable to derive clinically-relevant information from EMG data collected during functional evaluations." @default.
- W2943452358 created "2019-05-09" @default.
- W2943452358 creator A5007121996 @default.
- W2943452358 creator A5010749035 @default.
- W2943452358 creator A5011944996 @default.
- W2943452358 creator A5017249817 @default.
- W2943452358 creator A5043542187 @default.
- W2943452358 creator A5059804382 @default.
- W2943452358 creator A5066700427 @default.
- W2943452358 creator A5088993727 @default.
- W2943452358 date "2019-01-05" @default.
- W2943452358 modified "2023-09-26" @default.
- W2943452358 title "Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation" @default.
- W2943452358 cites W1488282645 @default.
- W2943452358 cites W1782868933 @default.
- W2943452358 cites W1852332010 @default.
- W2943452358 cites W1964883684 @default.
- W2943452358 cites W1967742106 @default.
- W2943452358 cites W1976444345 @default.
- W2943452358 cites W1981740811 @default.
- W2943452358 cites W1987249686 @default.
- W2943452358 cites W1987782081 @default.
- W2943452358 cites W1988791799 @default.
- W2943452358 cites W1989094448 @default.
- W2943452358 cites W1989289149 @default.
- W2943452358 cites W1997150162 @default.
- W2943452358 cites W2000439420 @default.
- W2943452358 cites W2004748431 @default.
- W2943452358 cites W2023239517 @default.
- W2943452358 cites W2023370307 @default.
- W2943452358 cites W2029272191 @default.
- W2943452358 cites W2035221846 @default.
- W2943452358 cites W2045902658 @default.
- W2943452358 cites W2046403736 @default.
- W2943452358 cites W2056955239 @default.
- W2943452358 cites W2080438780 @default.
- W2943452358 cites W2086099578 @default.
- W2943452358 cites W2086268705 @default.
- W2943452358 cites W2087816641 @default.
- W2943452358 cites W2093513705 @default.
- W2943452358 cites W2094269666 @default.
- W2943452358 cites W2096027751 @default.
- W2943452358 cites W2103110842 @default.
- W2943452358 cites W2113816114 @default.
- W2943452358 cites W2120883178 @default.
- W2943452358 cites W2131368080 @default.
- W2943452358 cites W2133805389 @default.
- W2943452358 cites W2137247767 @default.
- W2943452358 cites W2138745364 @default.
- W2943452358 cites W2141087070 @default.
- W2943452358 cites W2153394193 @default.
- W2943452358 cites W2154461664 @default.
- W2943452358 cites W2159882449 @default.
- W2943452358 cites W2161480025 @default.
- W2943452358 cites W2168839887 @default.
- W2943452358 cites W2293157888 @default.
- W2943452358 cites W2314408623 @default.
- W2943452358 cites W2488164446 @default.
- W2943452358 cites W2514988606 @default.
- W2943452358 cites W2569791662 @default.
- W2943452358 cites W2586839984 @default.
- W2943452358 cites W2588979268 @default.
- W2943452358 cites W2601954649 @default.
- W2943452358 cites W2604317066 @default.
- W2943452358 cites W2605693004 @default.
- W2943452358 cites W2611159977 @default.
- W2943452358 cites W2770002039 @default.
- W2943452358 cites W2783698974 @default.
- W2943452358 cites W2789516295 @default.
- W2943452358 cites W2791638980 @default.
- W2943452358 cites W2794577726 @default.
- W2943452358 cites W2911964244 @default.
- W2943452358 cites W4244198952 @default.
- W2943452358 doi "https://doi.org/10.1186/s12891-018-2350-x" @default.
- W2943452358 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6320612" @default.
- W2943452358 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30611235" @default.
- W2943452358 hasPublicationYear "2019" @default.
- W2943452358 type Work @default.
- W2943452358 sameAs 2943452358 @default.
- W2943452358 citedByCount "13" @default.
- W2943452358 countsByYear W29434523582019 @default.
- W2943452358 countsByYear W29434523582020 @default.
- W2943452358 countsByYear W29434523582021 @default.
- W2943452358 countsByYear W29434523582022 @default.
- W2943452358 countsByYear W29434523582023 @default.
- W2943452358 crossrefType "journal-article" @default.
- W2943452358 hasAuthorship W2943452358A5007121996 @default.
- W2943452358 hasAuthorship W2943452358A5010749035 @default.
- W2943452358 hasAuthorship W2943452358A5011944996 @default.
- W2943452358 hasAuthorship W2943452358A5017249817 @default.
- W2943452358 hasAuthorship W2943452358A5043542187 @default.
- W2943452358 hasAuthorship W2943452358A5059804382 @default.
- W2943452358 hasAuthorship W2943452358A5066700427 @default.
- W2943452358 hasAuthorship W2943452358A5088993727 @default.
- W2943452358 hasBestOaLocation W29434523581 @default.
- W2943452358 hasConcept C105795698 @default.
- W2943452358 hasConcept C110313322 @default.
- W2943452358 hasConcept C119857082 @default.
- W2943452358 hasConcept C126838900 @default.
- W2943452358 hasConcept C14184104 @default.