Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943478633> ?p ?o ?g. }
- W2943478633 endingPage "821" @default.
- W2943478633 startingPage "811" @default.
- W2943478633 abstract "Human activities have altered terrestrial carbon (C) and nitrogen (N) dynamics via changes to land cover and use such as deforestation, agriculture, application of fertilizers, etc. and have influenced the patterns of organic C input and eutrophication in downstream freshwater ecosystems. Biogeochemical cycling of C and N and the related organic carbon (OC) production may display correlated diurnal and seasonal variations due to photosynthesis and respiration in these ecosystems, whose underlying mechanisms still need to be resolved. In this study, we document the diurnal and seasonal variations measured in DIC (dissolved inorganic carbon), NO3−, TOC (total organic carbon) and other related hydrochemical parameters (pH and DO-dissolved oxygen) in five artificial spring-pond ecosystems with differing land-uses in tanks draining into springs and corresponding ponds, constructed at the Shawan Karst Test Site, SW China. It was found that diurnal changes in DIC, NO3− and TOC in all ponds were dominated by aquatic ecosystem metabolism (i.e., photosynthesis and respiration), as evidenced by the pertinent variations in DO and pH. Daily DIC and NO3− uptake and OC production were higher in October (growing period) and lower in January (dormant period), indicating seasonal differences in assimilation that were determined by both changes in weather (temperature and light) and nutrient inputs. Under conditions of bare rock or bare soil, there was very low DIC and NO3− additions to the spring-pond ecosystems, resulting in lower OC productivity in the ponds. Cropped land yielded higher DIC and NO3− to the pond, due to growth of corn and use of fertilizers that enhanced OC production. Highest productivity and densest vegetation cover on tanks with grassland or shrubs (with higher N retention in soils) resulted in higher DIC but limited NO3− addition to the ecosystems downstream. The highest DIC concentration (in the grassland) resulted in maximum OC production in the pond. These results indicate that OC production in the ponds with elevated pH was limited by DIC fertilization. In general, the supply of DIC is not considered to limit aquatic primary productivity because its concentration exceeds that of other plant macronutrients such as NO3 and PO43− by two or three orders of magnitude. Therefore, the carbon limitation detected here may indicate that photoautotrophs in karst dominated aquatic terrains (dominated by Charophyta and Spirogyra) cannot use the total DIC for photosynthesis but only the dissolved CO2, which comprises <1% of total DIC at pH > 8.2 that is characteristic in these environments. This may have implications for control of eutrophication in such alkaline aquatic ecosystems, i.e., rates of eutrophication in freshwater ecosystems may be regulated not only by N and/or P but also by C. It is also projected that there will be an increase in OC sequestration with the current land-use and global climate change-driven increases in DIC, due to carbon limitation of aquatic primary production." @default.
- W2943478633 created "2019-05-09" @default.
- W2943478633 creator A5013881064 @default.
- W2943478633 creator A5032499430 @default.
- W2943478633 creator A5048170992 @default.
- W2943478633 creator A5067483347 @default.
- W2943478633 creator A5072963099 @default.
- W2943478633 creator A5082587742 @default.
- W2943478633 date "2019-07-01" @default.
- W2943478633 modified "2023-10-01" @default.
- W2943478633 title "Seasonal and diurnal variations in DIC, NO3− and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst Test Site, SW China: Carbon limitation of aquatic photosynthesis" @default.
- W2943478633 cites W1482867610 @default.
- W2943478633 cites W1567919582 @default.
- W2943478633 cites W1694406883 @default.
- W2943478633 cites W1845024941 @default.
- W2943478633 cites W1967948515 @default.
- W2943478633 cites W1971945883 @default.
- W2943478633 cites W1974530867 @default.
- W2943478633 cites W1978007507 @default.
- W2943478633 cites W1981034029 @default.
- W2943478633 cites W1981320231 @default.
- W2943478633 cites W1986194862 @default.
- W2943478633 cites W1986969892 @default.
- W2943478633 cites W2003436004 @default.
- W2943478633 cites W2005125308 @default.
- W2943478633 cites W2008775427 @default.
- W2943478633 cites W2010770993 @default.
- W2943478633 cites W2018459257 @default.
- W2943478633 cites W2019503981 @default.
- W2943478633 cites W2023720317 @default.
- W2943478633 cites W2024368453 @default.
- W2943478633 cites W2025780491 @default.
- W2943478633 cites W2029355257 @default.
- W2943478633 cites W2035574781 @default.
- W2943478633 cites W2045572639 @default.
- W2943478633 cites W2051148773 @default.
- W2943478633 cites W2058395400 @default.
- W2943478633 cites W2062985039 @default.
- W2943478633 cites W2065624815 @default.
- W2943478633 cites W2070123862 @default.
- W2943478633 cites W2078504958 @default.
- W2943478633 cites W2081038146 @default.
- W2943478633 cites W2093579001 @default.
- W2943478633 cites W2093665227 @default.
- W2943478633 cites W2108303690 @default.
- W2943478633 cites W2112448118 @default.
- W2943478633 cites W2112926032 @default.
- W2943478633 cites W2125746681 @default.
- W2943478633 cites W2135003112 @default.
- W2943478633 cites W2143324540 @default.
- W2943478633 cites W2143802446 @default.
- W2943478633 cites W2144459968 @default.
- W2943478633 cites W2148492494 @default.
- W2943478633 cites W2149717752 @default.
- W2943478633 cites W2155791793 @default.
- W2943478633 cites W2164087962 @default.
- W2943478633 cites W2187655859 @default.
- W2943478633 cites W2320408245 @default.
- W2943478633 cites W2370584049 @default.
- W2943478633 cites W2491382239 @default.
- W2943478633 cites W2508450075 @default.
- W2943478633 cites W2516585477 @default.
- W2943478633 cites W2592634527 @default.
- W2943478633 cites W2626648379 @default.
- W2943478633 cites W2744493071 @default.
- W2943478633 cites W2766274522 @default.
- W2943478633 cites W2768014012 @default.
- W2943478633 cites W2779197923 @default.
- W2943478633 cites W2789895401 @default.
- W2943478633 cites W2802277573 @default.
- W2943478633 cites W654312457 @default.
- W2943478633 doi "https://doi.org/10.1016/j.jhydrol.2019.04.090" @default.
- W2943478633 hasPublicationYear "2019" @default.
- W2943478633 type Work @default.
- W2943478633 sameAs 2943478633 @default.
- W2943478633 citedByCount "26" @default.
- W2943478633 countsByYear W29434786332020 @default.
- W2943478633 countsByYear W29434786332021 @default.
- W2943478633 countsByYear W29434786332022 @default.
- W2943478633 countsByYear W29434786332023 @default.
- W2943478633 crossrefType "journal-article" @default.
- W2943478633 hasAuthorship W2943478633A5013881064 @default.
- W2943478633 hasAuthorship W2943478633A5032499430 @default.
- W2943478633 hasAuthorship W2943478633A5048170992 @default.
- W2943478633 hasAuthorship W2943478633A5067483347 @default.
- W2943478633 hasAuthorship W2943478633A5072963099 @default.
- W2943478633 hasAuthorship W2943478633A5082587742 @default.
- W2943478633 hasConcept C107872376 @default.
- W2943478633 hasConcept C110872660 @default.
- W2943478633 hasConcept C127313418 @default.
- W2943478633 hasConcept C139719470 @default.
- W2943478633 hasConcept C142796444 @default.
- W2943478633 hasConcept C158787203 @default.
- W2943478633 hasConcept C162324750 @default.
- W2943478633 hasConcept C175327387 @default.
- W2943478633 hasConcept C185592680 @default.
- W2943478633 hasConcept C186699998 @default.
- W2943478633 hasConcept C187320778 @default.