Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943513939> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2943513939 abstract "Neural-based modeling techniques have been recognized as important vehicles in the microwave computer-aided design (CAD) area in addressing the growing challenges of designing next generation microwave device, circuits and systems. The purpose of this thesis is to develop advanced neural-based model generation and extrapolation techniques for microwave applications. The proposed techniques take advantage of the high-efficiency of automated model generation algorithm, the cost-effective concept of knowledge-based neural network and the generalization capability of extrapolation techniques, to achieve reliable models for microwave applications. An automated knowledge-based neural network model generation method using a new adaptive sampling technique for microwave applications is firstly proposed. The proposed method integrates all the subtasks involved in knowledge-based neural modeling, thereby facilitating a more efficient and automated model development framework. The new adaptive sampling technique incorporates interpolation techniques to determine the additional training samples required and their location in model input space. In this way, the proposed method can improve the efficiency and reduce the expense of knowledge-based neural model development. We propose a unified automated model structure adaptation algorithm for knowledge-based modeling using l1 optimization to automatically determine the type and topology of the mapping structure in a knowledge-based model. A new unified knowledge-based model structure to encompass various types of mappings is proposed. Using the distinctive property for feature selection of l1 optimization, the proposed method can automatically distinguish whether a mapping is needed or not and whether a mapping is linear or nonlinear. It is a more flexible and systematic technique and can further speed up the knowledge-based neural model development. As a further advancement, we propose an advanced multi-dimensional extrapolation technique for neural-based microwave modeling to make the model can be more reliably used outside the training range. Grid formulation in the extrapolation region is introduced and the proposed extrapolation is performed over these grids. We present multi-dimensional cubic polynomial extrapolation formulation and propose to use optimization to obtain extrapolated values at grid points. The validity of the proposed extrapolation method is demonstrated by both EM optimization example and nonlinear microwave simulation examples." @default.
- W2943513939 created "2019-05-09" @default.
- W2943513939 creator A5004005905 @default.
- W2943513939 date "2018-11-13" @default.
- W2943513939 modified "2023-09-27" @default.
- W2943513939 title "Advanced Neural-Based Model Generation and Extrapolation Techniques for Microwave Applications" @default.
- W2943513939 doi "https://doi.org/10.22215/etd/2018-13370" @default.
- W2943513939 hasPublicationYear "2018" @default.
- W2943513939 type Work @default.
- W2943513939 sameAs 2943513939 @default.
- W2943513939 citedByCount "0" @default.
- W2943513939 crossrefType "dissertation" @default.
- W2943513939 hasAuthorship W2943513939A5004005905 @default.
- W2943513939 hasBestOaLocation W29435139391 @default.
- W2943513939 hasConcept C104114177 @default.
- W2943513939 hasConcept C105795698 @default.
- W2943513939 hasConcept C119857082 @default.
- W2943513939 hasConcept C124101348 @default.
- W2943513939 hasConcept C132459708 @default.
- W2943513939 hasConcept C134306372 @default.
- W2943513939 hasConcept C137800194 @default.
- W2943513939 hasConcept C154945302 @default.
- W2943513939 hasConcept C19499675 @default.
- W2943513939 hasConcept C2781395549 @default.
- W2943513939 hasConcept C33923547 @default.
- W2943513939 hasConcept C41008148 @default.
- W2943513939 hasConcept C50644808 @default.
- W2943513939 hasConceptScore W2943513939C104114177 @default.
- W2943513939 hasConceptScore W2943513939C105795698 @default.
- W2943513939 hasConceptScore W2943513939C119857082 @default.
- W2943513939 hasConceptScore W2943513939C124101348 @default.
- W2943513939 hasConceptScore W2943513939C132459708 @default.
- W2943513939 hasConceptScore W2943513939C134306372 @default.
- W2943513939 hasConceptScore W2943513939C137800194 @default.
- W2943513939 hasConceptScore W2943513939C154945302 @default.
- W2943513939 hasConceptScore W2943513939C19499675 @default.
- W2943513939 hasConceptScore W2943513939C2781395549 @default.
- W2943513939 hasConceptScore W2943513939C33923547 @default.
- W2943513939 hasConceptScore W2943513939C41008148 @default.
- W2943513939 hasConceptScore W2943513939C50644808 @default.
- W2943513939 hasLocation W29435139391 @default.
- W2943513939 hasOpenAccess W2943513939 @default.
- W2943513939 hasPrimaryLocation W29435139391 @default.
- W2943513939 hasRelatedWork W2044461244 @default.
- W2943513939 hasRelatedWork W2057297263 @default.
- W2943513939 hasRelatedWork W2075641003 @default.
- W2943513939 hasRelatedWork W2080880047 @default.
- W2943513939 hasRelatedWork W2167211785 @default.
- W2943513939 hasRelatedWork W2168645698 @default.
- W2943513939 hasRelatedWork W2366940978 @default.
- W2943513939 hasRelatedWork W2961085424 @default.
- W2943513939 hasRelatedWork W2966109032 @default.
- W2943513939 hasRelatedWork W4237321385 @default.
- W2943513939 isParatext "false" @default.
- W2943513939 isRetracted "false" @default.
- W2943513939 magId "2943513939" @default.
- W2943513939 workType "dissertation" @default.