Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943640147> ?p ?o ?g. }
- W2943640147 endingPage "162" @default.
- W2943640147 startingPage "148" @default.
- W2943640147 abstract "Traditional remaining useful life (RUL) prediction methods developed in ideal environment are not applicable in real industrial world. This paper presents a new approach that combines transfer compact coding for hyper plane classifiers (TCCHC) with exponential semi-deterministic extended Kalman filter (EKF) to transfer the RUL prediction models among multiple working conditions, where three major processes are involved: Mel-frequency cepstral coefficient (MFCC) process for degradation curve establishment, TCCHC process for transfer learning, and exponential semi-deterministic EKF process for bearing RUL prediction. Here the main principle of transfer learning is to select and transfer the MFCC degradation curve from one working condition to another working condition. Furthermore, the purpose of exponential semi-deterministic EKF model is to obtain the probability density distribution of the RUL. Related experiments proved that transfer strategy has a significant advantage especially under varying working conditions, thus being a useful tool for bearing RUL prediction in real industrial system." @default.
- W2943640147 created "2019-05-09" @default.
- W2943640147 creator A5004651580 @default.
- W2943640147 creator A5011148961 @default.
- W2943640147 creator A5027894205 @default.
- W2943640147 creator A5083638473 @default.
- W2943640147 creator A5088503073 @default.
- W2943640147 date "2019-08-01" @default.
- W2943640147 modified "2023-10-16" @default.
- W2943640147 title "Transfer between multiple working conditions: A new TCCHC-based exponential semi-deterministic extended Kalman filter for bearing remaining useful life prediction" @default.
- W2943640147 cites W1519640767 @default.
- W2943640147 cites W1543999319 @default.
- W2943640147 cites W2005523062 @default.
- W2943640147 cites W2025387494 @default.
- W2943640147 cites W2026827177 @default.
- W2943640147 cites W2028124797 @default.
- W2943640147 cites W2032423026 @default.
- W2943640147 cites W2038591742 @default.
- W2943640147 cites W2051383181 @default.
- W2943640147 cites W2055873761 @default.
- W2943640147 cites W2056890665 @default.
- W2943640147 cites W2064175677 @default.
- W2943640147 cites W2081568281 @default.
- W2943640147 cites W2102098892 @default.
- W2943640147 cites W2127264368 @default.
- W2943640147 cites W2142724780 @default.
- W2943640147 cites W2152291914 @default.
- W2943640147 cites W2152995202 @default.
- W2943640147 cites W2155433308 @default.
- W2943640147 cites W2157483193 @default.
- W2943640147 cites W2165698076 @default.
- W2943640147 cites W2172064003 @default.
- W2943640147 cites W2286877141 @default.
- W2943640147 cites W2288371659 @default.
- W2943640147 cites W2473198494 @default.
- W2943640147 cites W2524356231 @default.
- W2943640147 cites W2544905596 @default.
- W2943640147 cites W2582221505 @default.
- W2943640147 cites W2588900524 @default.
- W2943640147 cites W2610267922 @default.
- W2943640147 cites W2737617578 @default.
- W2943640147 cites W2768386413 @default.
- W2943640147 cites W2773549135 @default.
- W2943640147 cites W2886924644 @default.
- W2943640147 cites W2903743164 @default.
- W2943640147 doi "https://doi.org/10.1016/j.measurement.2019.04.074" @default.
- W2943640147 hasPublicationYear "2019" @default.
- W2943640147 type Work @default.
- W2943640147 sameAs 2943640147 @default.
- W2943640147 citedByCount "18" @default.
- W2943640147 countsByYear W29436401472019 @default.
- W2943640147 countsByYear W29436401472020 @default.
- W2943640147 countsByYear W29436401472021 @default.
- W2943640147 countsByYear W29436401472022 @default.
- W2943640147 countsByYear W29436401472023 @default.
- W2943640147 crossrefType "journal-article" @default.
- W2943640147 hasAuthorship W2943640147A5004651580 @default.
- W2943640147 hasAuthorship W2943640147A5011148961 @default.
- W2943640147 hasAuthorship W2943640147A5027894205 @default.
- W2943640147 hasAuthorship W2943640147A5083638473 @default.
- W2943640147 hasAuthorship W2943640147A5088503073 @default.
- W2943640147 hasConcept C11413529 @default.
- W2943640147 hasConcept C127413603 @default.
- W2943640147 hasConcept C134306372 @default.
- W2943640147 hasConcept C151376022 @default.
- W2943640147 hasConcept C154945302 @default.
- W2943640147 hasConcept C157286648 @default.
- W2943640147 hasConcept C206833254 @default.
- W2943640147 hasConcept C2775924081 @default.
- W2943640147 hasConcept C33923547 @default.
- W2943640147 hasConcept C41008148 @default.
- W2943640147 hasConcept C47446073 @default.
- W2943640147 hasConceptScore W2943640147C11413529 @default.
- W2943640147 hasConceptScore W2943640147C127413603 @default.
- W2943640147 hasConceptScore W2943640147C134306372 @default.
- W2943640147 hasConceptScore W2943640147C151376022 @default.
- W2943640147 hasConceptScore W2943640147C154945302 @default.
- W2943640147 hasConceptScore W2943640147C157286648 @default.
- W2943640147 hasConceptScore W2943640147C206833254 @default.
- W2943640147 hasConceptScore W2943640147C2775924081 @default.
- W2943640147 hasConceptScore W2943640147C33923547 @default.
- W2943640147 hasConceptScore W2943640147C41008148 @default.
- W2943640147 hasConceptScore W2943640147C47446073 @default.
- W2943640147 hasFunder F4320321001 @default.
- W2943640147 hasLocation W29436401471 @default.
- W2943640147 hasOpenAccess W2943640147 @default.
- W2943640147 hasPrimaryLocation W29436401471 @default.
- W2943640147 hasRelatedWork W1583551837 @default.
- W2943640147 hasRelatedWork W1923104924 @default.
- W2943640147 hasRelatedWork W2107437717 @default.
- W2943640147 hasRelatedWork W2127064735 @default.
- W2943640147 hasRelatedWork W2389779607 @default.
- W2943640147 hasRelatedWork W2757542505 @default.
- W2943640147 hasRelatedWork W3046717951 @default.
- W2943640147 hasRelatedWork W3217598563 @default.
- W2943640147 hasRelatedWork W4310470578 @default.
- W2943640147 hasRelatedWork W959416163 @default.
- W2943640147 hasVolume "142" @default.