Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943676210> ?p ?o ?g. }
- W2943676210 endingPage "1005" @default.
- W2943676210 startingPage "1005" @default.
- W2943676210 abstract "Hyperspectral pansharpening is an effective technique to obtain a high spatial resolution hyperspectral (HS) image. In this paper, a new hyperspectral pansharpening algorithm based on homomorphic filtering and weighted tensor matrix (HFWT) is proposed. In the proposed HFWT method, open-closing morphological operation is utilized to remove the noise of the HS image, and homomorphic filtering is introduced to extract the spatial details of each band in the denoised HS image. More importantly, a weighted root mean squared error-based method is proposed to obtain the total spatial information of the HS image, and an optimized weighted tensor matrix based strategy is presented to integrate spatial information of the HS image with spatial information of the panchromatic (PAN) image. With the appropriate integrated spatial details injection, the fused HS image is generated by constructing the suitable gain matrix. Experimental results over both simulated and real datasets demonstrate that the proposed HFWT method effectively generates the fused HS image with high spatial resolution while maintaining the spectral information of the original low spatial resolution HS image." @default.
- W2943676210 created "2019-05-09" @default.
- W2943676210 creator A5006601447 @default.
- W2943676210 creator A5033017179 @default.
- W2943676210 creator A5044736869 @default.
- W2943676210 creator A5045803591 @default.
- W2943676210 creator A5067798266 @default.
- W2943676210 date "2019-04-27" @default.
- W2943676210 modified "2023-10-16" @default.
- W2943676210 title "Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix" @default.
- W2943676210 cites W1587448943 @default.
- W2943676210 cites W1601669748 @default.
- W2943676210 cites W1799163428 @default.
- W2943676210 cites W1971637299 @default.
- W2943676210 cites W1980110630 @default.
- W2943676210 cites W1989070508 @default.
- W2943676210 cites W1990231296 @default.
- W2943676210 cites W1992027090 @default.
- W2943676210 cites W1998938956 @default.
- W2943676210 cites W2001470544 @default.
- W2943676210 cites W2001800591 @default.
- W2943676210 cites W2021046129 @default.
- W2943676210 cites W2054607040 @default.
- W2943676210 cites W2069132825 @default.
- W2943676210 cites W2071075212 @default.
- W2943676210 cites W2073827457 @default.
- W2943676210 cites W2078855750 @default.
- W2943676210 cites W2088538848 @default.
- W2943676210 cites W2100329651 @default.
- W2943676210 cites W2103504761 @default.
- W2943676210 cites W2124743705 @default.
- W2943676210 cites W2149720806 @default.
- W2943676210 cites W2161815745 @default.
- W2943676210 cites W2171108951 @default.
- W2943676210 cites W2171211028 @default.
- W2943676210 cites W2258038090 @default.
- W2943676210 cites W2295576075 @default.
- W2943676210 cites W2343120142 @default.
- W2943676210 cites W2480706550 @default.
- W2943676210 cites W2592312604 @default.
- W2943676210 cites W2625894731 @default.
- W2943676210 cites W2743091961 @default.
- W2943676210 cites W2743618639 @default.
- W2943676210 cites W2765674230 @default.
- W2943676210 cites W2767112898 @default.
- W2943676210 cites W2789643644 @default.
- W2943676210 cites W2789886405 @default.
- W2943676210 cites W2799870441 @default.
- W2943676210 cites W2803825432 @default.
- W2943676210 cites W2906379534 @default.
- W2943676210 cites W2906771061 @default.
- W2943676210 cites W2921660688 @default.
- W2943676210 cites W2963442801 @default.
- W2943676210 cites W3099843321 @default.
- W2943676210 doi "https://doi.org/10.3390/rs11091005" @default.
- W2943676210 hasPublicationYear "2019" @default.
- W2943676210 type Work @default.
- W2943676210 sameAs 2943676210 @default.
- W2943676210 citedByCount "4" @default.
- W2943676210 countsByYear W29436762102020 @default.
- W2943676210 countsByYear W29436762102022 @default.
- W2943676210 crossrefType "journal-article" @default.
- W2943676210 hasAuthorship W2943676210A5006601447 @default.
- W2943676210 hasAuthorship W2943676210A5033017179 @default.
- W2943676210 hasAuthorship W2943676210A5044736869 @default.
- W2943676210 hasAuthorship W2943676210A5045803591 @default.
- W2943676210 hasAuthorship W2943676210A5067798266 @default.
- W2943676210 hasBestOaLocation W29436762101 @default.
- W2943676210 hasConcept C105795698 @default.
- W2943676210 hasConcept C107445234 @default.
- W2943676210 hasConcept C113315163 @default.
- W2943676210 hasConcept C115961682 @default.
- W2943676210 hasConcept C153180895 @default.
- W2943676210 hasConcept C154945302 @default.
- W2943676210 hasConcept C159078339 @default.
- W2943676210 hasConcept C159620131 @default.
- W2943676210 hasConcept C205372480 @default.
- W2943676210 hasConcept C3017601658 @default.
- W2943676210 hasConcept C31972630 @default.
- W2943676210 hasConcept C33923547 @default.
- W2943676210 hasConcept C41008148 @default.
- W2943676210 hasConcept C56683213 @default.
- W2943676210 hasConceptScore W2943676210C105795698 @default.
- W2943676210 hasConceptScore W2943676210C107445234 @default.
- W2943676210 hasConceptScore W2943676210C113315163 @default.
- W2943676210 hasConceptScore W2943676210C115961682 @default.
- W2943676210 hasConceptScore W2943676210C153180895 @default.
- W2943676210 hasConceptScore W2943676210C154945302 @default.
- W2943676210 hasConceptScore W2943676210C159078339 @default.
- W2943676210 hasConceptScore W2943676210C159620131 @default.
- W2943676210 hasConceptScore W2943676210C205372480 @default.
- W2943676210 hasConceptScore W2943676210C3017601658 @default.
- W2943676210 hasConceptScore W2943676210C31972630 @default.
- W2943676210 hasConceptScore W2943676210C33923547 @default.
- W2943676210 hasConceptScore W2943676210C41008148 @default.
- W2943676210 hasConceptScore W2943676210C56683213 @default.
- W2943676210 hasFunder F4320335595 @default.
- W2943676210 hasFunder F4320335785 @default.