Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943820904> ?p ?o ?g. }
- W2943820904 abstract "ABSTRACT Accurate, reliable prediction of risk for Alzheimer’s disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping—morphometry and structural connectomics—and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features=34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n=60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparison of classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers show the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning. Highlights We showed the utility of multimodal MRI, combining morphometry and white matter connectomes, to classify the diagnosis of AD and MCI using machine learning. In predicting the progression from MCI to AD, the morphometry model showed the best performance. Two independent clinical datasets were used in this study: one for model building, the other for generalizability testing." @default.
- W2943820904 created "2019-05-09" @default.
- W2943820904 creator A5004961175 @default.
- W2943820904 creator A5008147820 @default.
- W2943820904 creator A5009855300 @default.
- W2943820904 creator A5033979262 @default.
- W2943820904 creator A5037015805 @default.
- W2943820904 creator A5044353469 @default.
- W2943820904 creator A5048176207 @default.
- W2943820904 creator A5072249558 @default.
- W2943820904 creator A5080756118 @default.
- W2943820904 date "2018-09-04" @default.
- W2943820904 modified "2023-10-01" @default.
- W2943820904 title "Diagnosis and Prognosis of Alzheimer’s Disease Using Brain Morphometry and White Matter Connectomes" @default.
- W2943820904 cites W1919821049 @default.
- W2943820904 cites W1925906180 @default.
- W2943820904 cites W1987128048 @default.
- W2943820904 cites W2005483591 @default.
- W2943820904 cites W2007581301 @default.
- W2943820904 cites W2018593373 @default.
- W2943820904 cites W2028436804 @default.
- W2943820904 cites W2034252184 @default.
- W2943820904 cites W2040412343 @default.
- W2943820904 cites W2045855955 @default.
- W2943820904 cites W2051900852 @default.
- W2943820904 cites W2063001897 @default.
- W2943820904 cites W2070292918 @default.
- W2943820904 cites W2075496760 @default.
- W2943820904 cites W2083525891 @default.
- W2943820904 cites W2100478897 @default.
- W2943820904 cites W2101135654 @default.
- W2943820904 cites W2107169104 @default.
- W2943820904 cites W2109434518 @default.
- W2943820904 cites W2110208125 @default.
- W2943820904 cites W2113319997 @default.
- W2943820904 cites W2117340355 @default.
- W2943820904 cites W2124953625 @default.
- W2943820904 cites W2125630263 @default.
- W2943820904 cites W2127309075 @default.
- W2943820904 cites W2133182819 @default.
- W2943820904 cites W2139903016 @default.
- W2943820904 cites W2142294527 @default.
- W2943820904 cites W2145544236 @default.
- W2943820904 cites W2146089088 @default.
- W2943820904 cites W2151712416 @default.
- W2943820904 cites W2160917765 @default.
- W2943820904 cites W2161737267 @default.
- W2943820904 cites W2167840686 @default.
- W2943820904 cites W2321691898 @default.
- W2943820904 cites W2327547544 @default.
- W2943820904 cites W2344337444 @default.
- W2943820904 cites W2411336761 @default.
- W2943820904 cites W2421101021 @default.
- W2943820904 cites W2508982726 @default.
- W2943820904 cites W2605681564 @default.
- W2943820904 cites W2611561168 @default.
- W2943820904 cites W2766790218 @default.
- W2943820904 cites W2777315026 @default.
- W2943820904 cites W2950030754 @default.
- W2943820904 cites W3100715778 @default.
- W2943820904 cites W4241074797 @default.
- W2943820904 doi "https://doi.org/10.1101/407601" @default.
- W2943820904 hasPublicationYear "2018" @default.
- W2943820904 type Work @default.
- W2943820904 sameAs 2943820904 @default.
- W2943820904 citedByCount "0" @default.
- W2943820904 crossrefType "posted-content" @default.
- W2943820904 hasAuthorship W2943820904A5004961175 @default.
- W2943820904 hasAuthorship W2943820904A5008147820 @default.
- W2943820904 hasAuthorship W2943820904A5009855300 @default.
- W2943820904 hasAuthorship W2943820904A5033979262 @default.
- W2943820904 hasAuthorship W2943820904A5037015805 @default.
- W2943820904 hasAuthorship W2943820904A5044353469 @default.
- W2943820904 hasAuthorship W2943820904A5048176207 @default.
- W2943820904 hasAuthorship W2943820904A5072249558 @default.
- W2943820904 hasAuthorship W2943820904A5080756118 @default.
- W2943820904 hasBestOaLocation W29438209041 @default.
- W2943820904 hasConcept C101070640 @default.
- W2943820904 hasConcept C126838900 @default.
- W2943820904 hasConcept C142724271 @default.
- W2943820904 hasConcept C143409427 @default.
- W2943820904 hasConcept C149550507 @default.
- W2943820904 hasConcept C15744967 @default.
- W2943820904 hasConcept C169760540 @default.
- W2943820904 hasConcept C2778373026 @default.
- W2943820904 hasConcept C2779134260 @default.
- W2943820904 hasConcept C2781192897 @default.
- W2943820904 hasConcept C2781197716 @default.
- W2943820904 hasConcept C3018011982 @default.
- W2943820904 hasConcept C45715564 @default.
- W2943820904 hasConcept C502032728 @default.
- W2943820904 hasConcept C55493867 @default.
- W2943820904 hasConcept C58693492 @default.
- W2943820904 hasConcept C71924100 @default.
- W2943820904 hasConcept C72563966 @default.
- W2943820904 hasConcept C86803240 @default.
- W2943820904 hasConceptScore W2943820904C101070640 @default.
- W2943820904 hasConceptScore W2943820904C126838900 @default.
- W2943820904 hasConceptScore W2943820904C142724271 @default.
- W2943820904 hasConceptScore W2943820904C143409427 @default.