Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943863934> ?p ?o ?g. }
- W2943863934 endingPage "1544" @default.
- W2943863934 startingPage "1544" @default.
- W2943863934 abstract "The presence of defects like gas bubble in fabricated parts is inherent in the selective laser sintering process and the prediction of bubble shrinkage dynamics is crucial. In this paper, two artificial intelligence (AI) models based on Decision Trees algorithm were constructed in order to predict bubble dissolution time, namely the Ensemble Bagged Trees (EDT Bagged) and Ensemble Boosted Trees (EDT Boosted). A metadata including 68644 data were generated with the help of our previously developed numerical tool. The AI models used the initial bubble size, external domain size, diffusion coefficient, surface tension, viscosity, initial concentration, and chamber pressure as input parameters, whereas bubble dissolution time was considered as output variable. Evaluation of the models’ performance was achieved by criteria such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and coefficient of determination (R2). The results showed that EDT Bagged outperformed EDT Boosted. Sensitivity analysis was then conducted thanks to the Monte Carlo approach and it was found that three most important inputs for the problem were the diffusion coefficient, initial concentration, and bubble initial size. This study might help in quick prediction of bubble dissolution time to improve the production quality from industry." @default.
- W2943863934 created "2019-05-16" @default.
- W2943863934 creator A5016145537 @default.
- W2943863934 creator A5024957412 @default.
- W2943863934 creator A5029814958 @default.
- W2943863934 creator A5038209763 @default.
- W2943863934 creator A5069214273 @default.
- W2943863934 creator A5081981104 @default.
- W2943863934 creator A5087993028 @default.
- W2943863934 date "2019-05-10" @default.
- W2943863934 modified "2023-10-06" @default.
- W2943863934 title "Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees" @default.
- W2943863934 cites W1797651134 @default.
- W2943863934 cites W1965822839 @default.
- W2943863934 cites W1969793936 @default.
- W2943863934 cites W1971141266 @default.
- W2943863934 cites W2006084316 @default.
- W2943863934 cites W2010475827 @default.
- W2943863934 cites W2019712433 @default.
- W2943863934 cites W2031162164 @default.
- W2943863934 cites W2039240145 @default.
- W2943863934 cites W2039240409 @default.
- W2943863934 cites W2039286967 @default.
- W2943863934 cites W2060947741 @default.
- W2943863934 cites W2064521190 @default.
- W2943863934 cites W2066827407 @default.
- W2943863934 cites W2069758761 @default.
- W2943863934 cites W2078271880 @default.
- W2943863934 cites W2090977144 @default.
- W2943863934 cites W2102148524 @default.
- W2943863934 cites W2102732724 @default.
- W2943863934 cites W2106100548 @default.
- W2943863934 cites W2112908314 @default.
- W2943863934 cites W2123162799 @default.
- W2943863934 cites W2135677354 @default.
- W2943863934 cites W2135695572 @default.
- W2943863934 cites W2177299793 @default.
- W2943863934 cites W2301504345 @default.
- W2943863934 cites W2319270064 @default.
- W2943863934 cites W2417333436 @default.
- W2943863934 cites W2463153440 @default.
- W2943863934 cites W2508496315 @default.
- W2943863934 cites W2519388109 @default.
- W2943863934 cites W2738881233 @default.
- W2943863934 cites W2768469361 @default.
- W2943863934 cites W2769050941 @default.
- W2943863934 cites W2770661746 @default.
- W2943863934 cites W2772392741 @default.
- W2943863934 cites W2790863358 @default.
- W2943863934 cites W2791328889 @default.
- W2943863934 cites W2794803194 @default.
- W2943863934 cites W2801185784 @default.
- W2943863934 cites W2801596954 @default.
- W2943863934 cites W2885858291 @default.
- W2943863934 cites W2898084231 @default.
- W2943863934 cites W2904515890 @default.
- W2943863934 cites W2910617780 @default.
- W2943863934 cites W2913929519 @default.
- W2943863934 cites W2921499992 @default.
- W2943863934 cites W2923370583 @default.
- W2943863934 cites W2932113325 @default.
- W2943863934 cites W2935339072 @default.
- W2943863934 cites W4236137412 @default.
- W2943863934 cites W853658787 @default.
- W2943863934 doi "https://doi.org/10.3390/ma12091544" @default.
- W2943863934 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6539969" @default.
- W2943863934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31083456" @default.
- W2943863934 hasPublicationYear "2019" @default.
- W2943863934 type Work @default.
- W2943863934 sameAs 2943863934 @default.
- W2943863934 citedByCount "58" @default.
- W2943863934 countsByYear W29438639342019 @default.
- W2943863934 countsByYear W29438639342020 @default.
- W2943863934 countsByYear W29438639342021 @default.
- W2943863934 countsByYear W29438639342022 @default.
- W2943863934 countsByYear W29438639342023 @default.
- W2943863934 crossrefType "journal-article" @default.
- W2943863934 hasAuthorship W2943863934A5016145537 @default.
- W2943863934 hasAuthorship W2943863934A5024957412 @default.
- W2943863934 hasAuthorship W2943863934A5029814958 @default.
- W2943863934 hasAuthorship W2943863934A5038209763 @default.
- W2943863934 hasAuthorship W2943863934A5069214273 @default.
- W2943863934 hasAuthorship W2943863934A5081981104 @default.
- W2943863934 hasAuthorship W2943863934A5087993028 @default.
- W2943863934 hasBestOaLocation W29438639341 @default.
- W2943863934 hasConcept C105795698 @default.
- W2943863934 hasConcept C121332964 @default.
- W2943863934 hasConcept C127413603 @default.
- W2943863934 hasConcept C128990827 @default.
- W2943863934 hasConcept C139945424 @default.
- W2943863934 hasConcept C147789679 @default.
- W2943863934 hasConcept C157915830 @default.
- W2943863934 hasConcept C185592680 @default.
- W2943863934 hasConcept C192562407 @default.
- W2943863934 hasConcept C21200559 @default.
- W2943863934 hasConcept C24326235 @default.
- W2943863934 hasConcept C33923547 @default.
- W2943863934 hasConcept C41008148 @default.