Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943906059> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2943906059 abstract "Facial attribute recognition including age, gender and expression has increase curiosity among computer vision and pattern recognition researchers to do research in this area from last few years.The main reason is the number of applications that work on this challenging area ranges from security control to person identification, to human-computer interaction. Facial Expression recognition has been used in various application actively such as avatar animation, neuromarketing and sociable robots.To identify particular facial expressions from various facial expression is not an easy task for machine learning methods because there are various way of showing expression. Even images of the same person in one expression can vary in brightness, background and position. This is reason why facial expression recognition is also a challenging problem with age and gender identification from facial image. Availaibity of large labeled dataset and the advancement done in the design of convolutional neural networks, error rates have dropped significantly.However, this still remains a troublesome issue and existing commercial systems fall short when dealing with real-world scenarios. Convolutional neural system (CNN), a standout amongst the most commonly utilized deep learing methods, has been applied to number of application related to computer vision and pattern recognition tasks, and has achieved state-of-the-art performance.Three tasks are performed,namely age estimation and gender estimation from facial image and another task is to estimate expression from input face image. To address the problems of age, gender and expression recognition in this work we propose a facial recognition system with facial attrbutes such as age, gender and expression that uses Convolutional Neural Networks. Data augmentation and different preprocessing steps were studied together with various Convolutional Neural Networks architectures. The data augmentation and pre-processing steps were used to help the network on the feature selection. Implementing Convolution Neural network(CNN) in Facial Identification Device(FID) helps to make system much more secure and error free. We have shown that the consistency factor and reliability has improved with the use of convolution neural network through the analysis and research." @default.
- W2943906059 created "2019-05-16" @default.
- W2943906059 creator A5073338594 @default.
- W2943906059 date "2018-01-01" @default.
- W2943906059 modified "2023-09-27" @default.
- W2943906059 title "Age, Gender, Expression Recognition Through Face Using Secure Deep Learning" @default.
- W2943906059 hasPublicationYear "2018" @default.
- W2943906059 type Work @default.
- W2943906059 sameAs 2943906059 @default.
- W2943906059 citedByCount "0" @default.
- W2943906059 crossrefType "dissertation" @default.
- W2943906059 hasAuthorship W2943906059A5073338594 @default.
- W2943906059 hasConcept C108583219 @default.
- W2943906059 hasConcept C116834253 @default.
- W2943906059 hasConcept C119857082 @default.
- W2943906059 hasConcept C127413603 @default.
- W2943906059 hasConcept C144024400 @default.
- W2943906059 hasConcept C153180895 @default.
- W2943906059 hasConcept C154945302 @default.
- W2943906059 hasConcept C195704467 @default.
- W2943906059 hasConcept C199360897 @default.
- W2943906059 hasConcept C201995342 @default.
- W2943906059 hasConcept C2779304628 @default.
- W2943906059 hasConcept C2780451532 @default.
- W2943906059 hasConcept C28490314 @default.
- W2943906059 hasConcept C31510193 @default.
- W2943906059 hasConcept C31972630 @default.
- W2943906059 hasConcept C36289849 @default.
- W2943906059 hasConcept C41008148 @default.
- W2943906059 hasConcept C4641261 @default.
- W2943906059 hasConcept C54654163 @default.
- W2943906059 hasConcept C59822182 @default.
- W2943906059 hasConcept C81363708 @default.
- W2943906059 hasConcept C86803240 @default.
- W2943906059 hasConcept C88799230 @default.
- W2943906059 hasConcept C90559484 @default.
- W2943906059 hasConceptScore W2943906059C108583219 @default.
- W2943906059 hasConceptScore W2943906059C116834253 @default.
- W2943906059 hasConceptScore W2943906059C119857082 @default.
- W2943906059 hasConceptScore W2943906059C127413603 @default.
- W2943906059 hasConceptScore W2943906059C144024400 @default.
- W2943906059 hasConceptScore W2943906059C153180895 @default.
- W2943906059 hasConceptScore W2943906059C154945302 @default.
- W2943906059 hasConceptScore W2943906059C195704467 @default.
- W2943906059 hasConceptScore W2943906059C199360897 @default.
- W2943906059 hasConceptScore W2943906059C201995342 @default.
- W2943906059 hasConceptScore W2943906059C2779304628 @default.
- W2943906059 hasConceptScore W2943906059C2780451532 @default.
- W2943906059 hasConceptScore W2943906059C28490314 @default.
- W2943906059 hasConceptScore W2943906059C31510193 @default.
- W2943906059 hasConceptScore W2943906059C31972630 @default.
- W2943906059 hasConceptScore W2943906059C36289849 @default.
- W2943906059 hasConceptScore W2943906059C41008148 @default.
- W2943906059 hasConceptScore W2943906059C4641261 @default.
- W2943906059 hasConceptScore W2943906059C54654163 @default.
- W2943906059 hasConceptScore W2943906059C59822182 @default.
- W2943906059 hasConceptScore W2943906059C81363708 @default.
- W2943906059 hasConceptScore W2943906059C86803240 @default.
- W2943906059 hasConceptScore W2943906059C88799230 @default.
- W2943906059 hasConceptScore W2943906059C90559484 @default.
- W2943906059 hasLocation W29439060591 @default.
- W2943906059 hasOpenAccess W2943906059 @default.
- W2943906059 hasPrimaryLocation W29439060591 @default.
- W2943906059 hasRelatedWork W1965804146 @default.
- W2943906059 hasRelatedWork W2491131609 @default.
- W2943906059 hasRelatedWork W2602429756 @default.
- W2943906059 hasRelatedWork W2735716688 @default.
- W2943906059 hasRelatedWork W2754722315 @default.
- W2943906059 hasRelatedWork W2767520979 @default.
- W2943906059 hasRelatedWork W2768460137 @default.
- W2943906059 hasRelatedWork W2779656294 @default.
- W2943906059 hasRelatedWork W2890625241 @default.
- W2943906059 hasRelatedWork W2910166529 @default.
- W2943906059 hasRelatedWork W2982372777 @default.
- W2943906059 hasRelatedWork W2999431211 @default.
- W2943906059 hasRelatedWork W3022000705 @default.
- W2943906059 hasRelatedWork W3104910122 @default.
- W2943906059 hasRelatedWork W3157999215 @default.
- W2943906059 hasRelatedWork W3161961787 @default.
- W2943906059 hasRelatedWork W3173054075 @default.
- W2943906059 hasRelatedWork W3202906445 @default.
- W2943906059 hasRelatedWork W3204568664 @default.
- W2943906059 hasRelatedWork W2322430272 @default.
- W2943906059 isParatext "false" @default.
- W2943906059 isRetracted "false" @default.
- W2943906059 magId "2943906059" @default.
- W2943906059 workType "dissertation" @default.