Matches in SemOpenAlex for { <https://semopenalex.org/work/W2943962276> ?p ?o ?g. }
- W2943962276 endingPage "125" @default.
- W2943962276 startingPage "115" @default.
- W2943962276 abstract "This is a pioneering work in South America to model the exposure of cyclists to black carbon (BC) while riding in an urban area with high spatiotemporal variability of BC concentrations. We report on mobile BC concentrations sampled on 10 biking sessions in the city of Curitiba (Brazil), during rush hours of weekdays, covering four routes and totaling 178 km. Moreover, simultaneous BC measurements were conducted within a street canyon (street and rooftop levels) and at a site located 13 km from the city center. We used two statistical approaches to model the BC concentrations: multiple linear regression (MLR) and a machine-learning technique called random forests (RF). A pool of 25 candidate variables was created, including pollution measurements, traffic characteristics, street geometry and meteorology. The aggregated mean BC concentration within 30-m buffers along the four routes was 7.09 μg m-3, with large spatial variability (5th and 95th percentiles of 1.75 and 16.83 μg m-3, respectively). On average, the concentrations at the street canyon façade (5 m height) were lower than the mobile data but higher than the urban background levels. The MLR model explained a low percentage of variance (24%), but was within the values found in the literature for on-road BC mobile data. RF explained a larger variance (54%) with the additional advantage of having lower requirements for the target and predictor variables. The most impactful predictor for both models was the traffic rate of heavy-duty vehicles. Thus, to reduce the BC exposure of cyclists and residents living close to busy streets, we emphasize the importance of renewing and/or retrofitting the diesel-powered fleet, particularly public buses with old vehicle technologies. Urban planners could also use this valuable information to project bicycle lanes with greater separation from the circulation of heavy-duty diesel vehicles." @default.
- W2943962276 created "2019-05-16" @default.
- W2943962276 creator A5004719008 @default.
- W2943962276 creator A5010556299 @default.
- W2943962276 creator A5017360397 @default.
- W2943962276 creator A5031452032 @default.
- W2943962276 creator A5033148832 @default.
- W2943962276 creator A5041453142 @default.
- W2943962276 creator A5042810652 @default.
- W2943962276 creator A5059664182 @default.
- W2943962276 creator A5067926634 @default.
- W2943962276 date "2019-08-01" @default.
- W2943962276 modified "2023-09-23" @default.
- W2943962276 title "Modelling urban cyclists' exposure to black carbon particles using high spatiotemporal data: A statistical approach" @default.
- W2943962276 cites W1820056827 @default.
- W2943962276 cites W1968407341 @default.
- W2943962276 cites W1969620550 @default.
- W2943962276 cites W2012037158 @default.
- W2943962276 cites W2028765703 @default.
- W2943962276 cites W2031896678 @default.
- W2943962276 cites W2032340819 @default.
- W2943962276 cites W2049070055 @default.
- W2943962276 cites W2059911813 @default.
- W2943962276 cites W2091576320 @default.
- W2943962276 cites W2098637521 @default.
- W2943962276 cites W2109844898 @default.
- W2943962276 cites W2128058403 @default.
- W2943962276 cites W2146490342 @default.
- W2943962276 cites W2233845141 @default.
- W2943962276 cites W2352017734 @default.
- W2943962276 cites W2434823106 @default.
- W2943962276 cites W2467744549 @default.
- W2943962276 cites W2507078409 @default.
- W2943962276 cites W2546950881 @default.
- W2943962276 cites W2555420142 @default.
- W2943962276 cites W2559599946 @default.
- W2943962276 cites W2594967439 @default.
- W2943962276 cites W2595823105 @default.
- W2943962276 cites W2704239719 @default.
- W2943962276 cites W2765878052 @default.
- W2943962276 cites W2766555139 @default.
- W2943962276 cites W2781813618 @default.
- W2943962276 cites W2795441672 @default.
- W2943962276 cites W2796040336 @default.
- W2943962276 cites W2804559831 @default.
- W2943962276 cites W2844005931 @default.
- W2943962276 cites W2880992816 @default.
- W2943962276 cites W2891910989 @default.
- W2943962276 cites W2904119461 @default.
- W2943962276 cites W2911964244 @default.
- W2943962276 cites W2912428869 @default.
- W2943962276 cites W2939345116 @default.
- W2943962276 doi "https://doi.org/10.1016/j.scitotenv.2019.05.043" @default.
- W2943962276 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31082586" @default.
- W2943962276 hasPublicationYear "2019" @default.
- W2943962276 type Work @default.
- W2943962276 sameAs 2943962276 @default.
- W2943962276 citedByCount "24" @default.
- W2943962276 countsByYear W29439622762019 @default.
- W2943962276 countsByYear W29439622762020 @default.
- W2943962276 countsByYear W29439622762021 @default.
- W2943962276 countsByYear W29439622762022 @default.
- W2943962276 crossrefType "journal-article" @default.
- W2943962276 hasAuthorship W2943962276A5004719008 @default.
- W2943962276 hasAuthorship W2943962276A5010556299 @default.
- W2943962276 hasAuthorship W2943962276A5017360397 @default.
- W2943962276 hasAuthorship W2943962276A5031452032 @default.
- W2943962276 hasAuthorship W2943962276A5033148832 @default.
- W2943962276 hasAuthorship W2943962276A5041453142 @default.
- W2943962276 hasAuthorship W2943962276A5042810652 @default.
- W2943962276 hasAuthorship W2943962276A5059664182 @default.
- W2943962276 hasAuthorship W2943962276A5067926634 @default.
- W2943962276 hasConcept C105795698 @default.
- W2943962276 hasConcept C122048520 @default.
- W2943962276 hasConcept C153294291 @default.
- W2943962276 hasConcept C18903297 @default.
- W2943962276 hasConcept C205649164 @default.
- W2943962276 hasConcept C33923547 @default.
- W2943962276 hasConcept C39432304 @default.
- W2943962276 hasConcept C48921125 @default.
- W2943962276 hasConcept C559116025 @default.
- W2943962276 hasConcept C86803240 @default.
- W2943962276 hasConceptScore W2943962276C105795698 @default.
- W2943962276 hasConceptScore W2943962276C122048520 @default.
- W2943962276 hasConceptScore W2943962276C153294291 @default.
- W2943962276 hasConceptScore W2943962276C18903297 @default.
- W2943962276 hasConceptScore W2943962276C205649164 @default.
- W2943962276 hasConceptScore W2943962276C33923547 @default.
- W2943962276 hasConceptScore W2943962276C39432304 @default.
- W2943962276 hasConceptScore W2943962276C48921125 @default.
- W2943962276 hasConceptScore W2943962276C559116025 @default.
- W2943962276 hasConceptScore W2943962276C86803240 @default.
- W2943962276 hasFunder F4320324953 @default.
- W2943962276 hasLocation W29439622761 @default.
- W2943962276 hasLocation W29439622762 @default.
- W2943962276 hasOpenAccess W2943962276 @default.
- W2943962276 hasPrimaryLocation W29439622761 @default.
- W2943962276 hasRelatedWork W1983430523 @default.