Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944052783> ?p ?o ?g. }
- W2944052783 endingPage "2820" @default.
- W2944052783 startingPage "2807" @default.
- W2944052783 abstract "Current deep supervised learning methods typically require large amounts of labeled data for training. Since there is a significant cost associated with clinical data acquisition and labeling, medical datasets used for training these models are relatively small in size. In this paper, we aim to alleviate this limitation by proposing a variational generative model along with an effective data augmentation approach that utilizes the generative model to synthesize data. In our approach, the model learns the probability distribution of image data conditioned on a latent variable and the corresponding labels. The trained model can then be used to synthesize new images for data augmentation. We demonstrate the effectiveness of the approach on two independent clinical datasets consisting of ultrasound images of the spine and magnetic resonance images of the brain. For the spine dataset, a baseline and a residual model achieve an accuracy of 85% and 92%, respectively, using our method compared to 78% and 83% using a conventional training approach for image classification task. For the brain dataset, a baseline and a U-net network achieve an accuracy of 84% and 88%, respectively, in Dice coefficient in tumor segmentation compared to 80% and 83% for the convention training approach." @default.
- W2944052783 created "2019-05-16" @default.
- W2944052783 creator A5023095072 @default.
- W2944052783 creator A5043147671 @default.
- W2944052783 creator A5088844445 @default.
- W2944052783 date "2019-12-01" @default.
- W2944052783 modified "2023-10-14" @default.
- W2944052783 title "Adaptive Augmentation of Medical Data Using Independently Conditional Variational Auto-Encoders" @default.
- W2944052783 cites W1501851992 @default.
- W2944052783 cites W1641498739 @default.
- W2944052783 cites W1677182931 @default.
- W2944052783 cites W1903029394 @default.
- W2944052783 cites W1937824714 @default.
- W2944052783 cites W1968319517 @default.
- W2944052783 cites W1972275693 @default.
- W2944052783 cites W2011702013 @default.
- W2944052783 cites W2016944307 @default.
- W2944052783 cites W2020884850 @default.
- W2944052783 cites W2045004029 @default.
- W2944052783 cites W2061554433 @default.
- W2944052783 cites W2084413241 @default.
- W2944052783 cites W2097117768 @default.
- W2944052783 cites W2103407801 @default.
- W2944052783 cites W2103520586 @default.
- W2944052783 cites W2104848109 @default.
- W2944052783 cites W2106479238 @default.
- W2944052783 cites W2112796928 @default.
- W2944052783 cites W2120427205 @default.
- W2944052783 cites W2132424367 @default.
- W2944052783 cites W2141014056 @default.
- W2944052783 cites W2145920976 @default.
- W2944052783 cites W2149734398 @default.
- W2944052783 cites W2156163116 @default.
- W2944052783 cites W2194321275 @default.
- W2944052783 cites W2194775991 @default.
- W2944052783 cites W2226832866 @default.
- W2944052783 cites W2253429366 @default.
- W2944052783 cites W2293078015 @default.
- W2944052783 cites W2301358467 @default.
- W2944052783 cites W2310992461 @default.
- W2944052783 cites W2312404985 @default.
- W2944052783 cites W2528578439 @default.
- W2944052783 cites W2567079332 @default.
- W2944052783 cites W2581082771 @default.
- W2944052783 cites W2592929672 @default.
- W2944052783 cites W2604262106 @default.
- W2944052783 cites W2616891469 @default.
- W2944052783 cites W2625559849 @default.
- W2944052783 cites W2744692634 @default.
- W2944052783 cites W2752785527 @default.
- W2944052783 cites W2782723346 @default.
- W2944052783 cites W2785390226 @default.
- W2944052783 cites W2786532017 @default.
- W2944052783 cites W2790277825 @default.
- W2944052783 cites W2800691917 @default.
- W2944052783 cites W2805463446 @default.
- W2944052783 cites W2806118840 @default.
- W2944052783 cites W2962793481 @default.
- W2944052783 cites W2962914239 @default.
- W2944052783 cites W2963108767 @default.
- W2944052783 cites W2963426391 @default.
- W2944052783 cites W2963446712 @default.
- W2944052783 cites W2963538198 @default.
- W2944052783 cites W2963869863 @default.
- W2944052783 doi "https://doi.org/10.1109/tmi.2019.2914656" @default.
- W2944052783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31059432" @default.
- W2944052783 hasPublicationYear "2019" @default.
- W2944052783 type Work @default.
- W2944052783 sameAs 2944052783 @default.
- W2944052783 citedByCount "57" @default.
- W2944052783 countsByYear W29440527832019 @default.
- W2944052783 countsByYear W29440527832020 @default.
- W2944052783 countsByYear W29440527832021 @default.
- W2944052783 countsByYear W29440527832022 @default.
- W2944052783 countsByYear W29440527832023 @default.
- W2944052783 crossrefType "journal-article" @default.
- W2944052783 hasAuthorship W2944052783A5023095072 @default.
- W2944052783 hasAuthorship W2944052783A5043147671 @default.
- W2944052783 hasAuthorship W2944052783A5088844445 @default.
- W2944052783 hasConcept C11413529 @default.
- W2944052783 hasConcept C119857082 @default.
- W2944052783 hasConcept C124504099 @default.
- W2944052783 hasConcept C153180895 @default.
- W2944052783 hasConcept C154945302 @default.
- W2944052783 hasConcept C155512373 @default.
- W2944052783 hasConcept C163892561 @default.
- W2944052783 hasConcept C167966045 @default.
- W2944052783 hasConcept C31601959 @default.
- W2944052783 hasConcept C39890363 @default.
- W2944052783 hasConcept C41008148 @default.
- W2944052783 hasConcept C50644808 @default.
- W2944052783 hasConcept C51167844 @default.
- W2944052783 hasConcept C67186912 @default.
- W2944052783 hasConcept C77088390 @default.
- W2944052783 hasConcept C89600930 @default.
- W2944052783 hasConceptScore W2944052783C11413529 @default.
- W2944052783 hasConceptScore W2944052783C119857082 @default.
- W2944052783 hasConceptScore W2944052783C124504099 @default.