Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944078296> ?p ?o ?g. }
- W2944078296 endingPage "38" @default.
- W2944078296 startingPage "28" @default.
- W2944078296 abstract "Although carboxyl and phosphoryl functional groups within the bacterial cell envelope and on bacterial extracellular polymeric substance (EPS) molecules are the most abundant metal binding sites, recent studies suggest that sulfhydryl sites control the binding of chalcophile and similar elements under environmentally-relevant metal loading conditions. The role of cell surface sulfhydryl sites in metal binding has been demonstrated unambiguously for Zn, Cd, Hg, Cu, Au, and Se. This review article summarizes our current understanding of the nature, concentration, and reactivity of these important metal binding sites, their distribution between the cell envelope and extractable EPS molecules, and their possible role in controlling bacterial bioavailability of some elements. The objective of the review is to summarize the relatively few studies that have focussed on bacterial sulfhydryl sites, and to identify areas in which future research may be most productive. Sulfhydryl sites comprise only approximately 5–10% of the total binding site concentration of bacterial cell envelopes, but exhibit such a high affinity for some metals that under low metal loading conditions, sulfhydryl binding of metals is responsible for nearly 100% of the adsorbed metal budget. Recent experimental results have revealed that the concentration and distribution of sulfhydryl sites between cell envelope macromolecules and cell-produced EPS are dependent on the bacterial species, growth phase, and growth conditions. For example, the cell envelope sulfhydryl site concentrations of Bacillus subtilis increase with increasing glucose concentration in the growth medium. Shewanella oneidensis cells contain high concentrations of sulfhydryl sites within their cell envelopes with much lower concentrations present on EPS molecules, while Pseudomonas putida cells exhibit the opposite. We apply a proteomics approach to explain the observed differences in sulfhydryl distributions for S. oneidensis and P. putida. The proteomics analysis indicates that the outer membrane proteins of S. oneidensis contains a high concentration of cysteine residues, while the cell surface proteins of P. putida are relatively cysteine-poor, with cysteine-rich proteins of P. putida associated predominately with EPS materials. The results of this proteomics analysis demonstrate the potential to identify the range of possible protein hosts for metal binding sulfhydryl sites, and the approach represents a means for predicting the concentration and distribution of sulfhydryl metal binding sites on bacterial cells and EPS molecules." @default.
- W2944078296 created "2019-05-16" @default.
- W2944078296 creator A5031516792 @default.
- W2944078296 creator A5061163756 @default.
- W2944078296 creator A5064909299 @default.
- W2944078296 creator A5070557993 @default.
- W2944078296 date "2019-09-01" @default.
- W2944078296 modified "2023-10-02" @default.
- W2944078296 title "Bacterial cell envelope and extracellular sulfhydryl binding sites: Their roles in metal binding and bioavailability" @default.
- W2944078296 cites W1233541004 @default.
- W2944078296 cites W1514223258 @default.
- W2944078296 cites W154700361 @default.
- W2944078296 cites W1582066981 @default.
- W2944078296 cites W1761747063 @default.
- W2944078296 cites W1924298038 @default.
- W2944078296 cites W1969757312 @default.
- W2944078296 cites W1972292883 @default.
- W2944078296 cites W1972893759 @default.
- W2944078296 cites W1975292068 @default.
- W2944078296 cites W1982536024 @default.
- W2944078296 cites W1983138570 @default.
- W2944078296 cites W1985469245 @default.
- W2944078296 cites W1991810205 @default.
- W2944078296 cites W1992712048 @default.
- W2944078296 cites W1996700291 @default.
- W2944078296 cites W2002212735 @default.
- W2944078296 cites W2011093421 @default.
- W2944078296 cites W2014101523 @default.
- W2944078296 cites W2016308458 @default.
- W2944078296 cites W2016673821 @default.
- W2944078296 cites W2019052896 @default.
- W2944078296 cites W2019333745 @default.
- W2944078296 cites W2019856715 @default.
- W2944078296 cites W2020140234 @default.
- W2944078296 cites W2020322048 @default.
- W2944078296 cites W2024231763 @default.
- W2944078296 cites W2026159076 @default.
- W2944078296 cites W2028899902 @default.
- W2944078296 cites W2031126485 @default.
- W2944078296 cites W2036523222 @default.
- W2944078296 cites W2037421021 @default.
- W2944078296 cites W2038683612 @default.
- W2944078296 cites W2039128307 @default.
- W2944078296 cites W2039268898 @default.
- W2944078296 cites W2042557165 @default.
- W2944078296 cites W2046994421 @default.
- W2944078296 cites W2053531963 @default.
- W2944078296 cites W2063315520 @default.
- W2944078296 cites W2069630487 @default.
- W2944078296 cites W2070592162 @default.
- W2944078296 cites W2070720388 @default.
- W2944078296 cites W2070792913 @default.
- W2944078296 cites W2070884923 @default.
- W2944078296 cites W2074650491 @default.
- W2944078296 cites W2075652389 @default.
- W2944078296 cites W2076707000 @default.
- W2944078296 cites W2083274231 @default.
- W2944078296 cites W2084563469 @default.
- W2944078296 cites W2085694693 @default.
- W2944078296 cites W2091209912 @default.
- W2944078296 cites W2091742324 @default.
- W2944078296 cites W2093958715 @default.
- W2944078296 cites W2094396843 @default.
- W2944078296 cites W2097287580 @default.
- W2944078296 cites W2099928613 @default.
- W2944078296 cites W2102155914 @default.
- W2944078296 cites W2103718115 @default.
- W2944078296 cites W2109553927 @default.
- W2944078296 cites W2112081188 @default.
- W2944078296 cites W2119169305 @default.
- W2944078296 cites W2121853171 @default.
- W2944078296 cites W2125599019 @default.
- W2944078296 cites W2128973078 @default.
- W2944078296 cites W2132700284 @default.
- W2944078296 cites W2139770049 @default.
- W2944078296 cites W2156102122 @default.
- W2944078296 cites W2156338877 @default.
- W2944078296 cites W2159010530 @default.
- W2944078296 cites W2161714667 @default.
- W2944078296 cites W2162213922 @default.
- W2944078296 cites W2164376214 @default.
- W2944078296 cites W2167428512 @default.
- W2944078296 cites W2218656852 @default.
- W2944078296 cites W2315698350 @default.
- W2944078296 cites W2330968351 @default.
- W2944078296 cites W2354699225 @default.
- W2944078296 cites W2531228234 @default.
- W2944078296 cites W2560067031 @default.
- W2944078296 cites W2588626553 @default.
- W2944078296 cites W2597760097 @default.
- W2944078296 cites W2625646902 @default.
- W2944078296 cites W2714056500 @default.
- W2944078296 cites W2768939468 @default.
- W2944078296 cites W2888574761 @default.
- W2944078296 cites W2891178308 @default.
- W2944078296 cites W2950435517 @default.
- W2944078296 cites W822234079 @default.
- W2944078296 doi "https://doi.org/10.1016/j.chemgeo.2019.04.026" @default.