Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944103525> ?p ?o ?g. }
- W2944103525 endingPage "2097" @default.
- W2944103525 startingPage "2097" @default.
- W2944103525 abstract "G protein-coupled receptors (GPCRs) play a key role in many cellular signaling mechanisms, and must select among multiple coupling possibilities in a ligand-specific manner in order to carry out a myriad of functions in diverse cellular contexts. Much has been learned about the molecular mechanisms of ligand-GPCR complexes from Molecular Dynamics (MD) simulations. However, to explore ligand-specific differences in the response of a GPCR to diverse ligands, as is required to understand ligand bias and functional selectivity, necessitates creating very large amounts of data from the needed large-scale simulations. This becomes a Big Data problem for the high dimensionality analysis of the accumulated trajectories. Here we describe a new machine learning (ML) approach to the problem that is based on transforming the analysis of GPCR function-related, ligand-specific differences encoded in the MD simulation trajectories into a representation recognizable by state-of-the-art deep learning object recognition technology. We illustrate this method by applying it to recognize the pharmacological classification of ligands bound to the 5-HT2A and D2 subtypes of class-A GPCRs from the serotonin and dopamine families. The ML-based approach is shown to perform the classification task with high accuracy, and we identify the molecular determinants of the classifications in the context of GPCR structure and function. This study builds a framework for the efficient computational analysis of MD Big Data collected for the purpose of understanding ligand-specific GPCR activity." @default.
- W2944103525 created "2019-05-16" @default.
- W2944103525 creator A5014370221 @default.
- W2944103525 creator A5054850069 @default.
- W2944103525 creator A5064391171 @default.
- W2944103525 creator A5077254266 @default.
- W2944103525 creator A5080767725 @default.
- W2944103525 date "2019-06-02" @default.
- W2944103525 modified "2023-10-18" @default.
- W2944103525 title "A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs" @default.
- W2944103525 cites W1833104430 @default.
- W2944103525 cites W1960000138 @default.
- W2944103525 cites W1964439982 @default.
- W2944103525 cites W1968319881 @default.
- W2944103525 cites W1970613671 @default.
- W2944103525 cites W1972820606 @default.
- W2944103525 cites W1975691556 @default.
- W2944103525 cites W1991483463 @default.
- W2944103525 cites W1997772366 @default.
- W2944103525 cites W1998729532 @default.
- W2944103525 cites W1999068689 @default.
- W2944103525 cites W2000787398 @default.
- W2944103525 cites W2001051130 @default.
- W2944103525 cites W2001406669 @default.
- W2944103525 cites W2005997645 @default.
- W2944103525 cites W2021520922 @default.
- W2944103525 cites W2027482274 @default.
- W2944103525 cites W2031168104 @default.
- W2944103525 cites W2047567287 @default.
- W2944103525 cites W2055062507 @default.
- W2944103525 cites W2060433756 @default.
- W2944103525 cites W2070624290 @default.
- W2944103525 cites W2070753604 @default.
- W2944103525 cites W2082586732 @default.
- W2944103525 cites W2088268098 @default.
- W2944103525 cites W2091260123 @default.
- W2944103525 cites W2102377211 @default.
- W2944103525 cites W2104961861 @default.
- W2944103525 cites W2111917512 @default.
- W2944103525 cites W2121473111 @default.
- W2944103525 cites W2147476077 @default.
- W2944103525 cites W2150981663 @default.
- W2944103525 cites W2159128662 @default.
- W2944103525 cites W2164339448 @default.
- W2944103525 cites W2169928107 @default.
- W2944103525 cites W2206954826 @default.
- W2944103525 cites W2277352000 @default.
- W2944103525 cites W2410613263 @default.
- W2944103525 cites W2568664960 @default.
- W2944103525 cites W2581696375 @default.
- W2944103525 cites W2613102394 @default.
- W2944103525 cites W2771328536 @default.
- W2944103525 cites W2782408527 @default.
- W2944103525 cites W2785023044 @default.
- W2944103525 cites W2786822500 @default.
- W2944103525 cites W2797071919 @default.
- W2944103525 cites W2811439927 @default.
- W2944103525 cites W2892113269 @default.
- W2944103525 cites W2907524203 @default.
- W2944103525 cites W2910817182 @default.
- W2944103525 cites W2963446712 @default.
- W2944103525 cites W4245532735 @default.
- W2944103525 cites W4245744705 @default.
- W2944103525 cites W95014119 @default.
- W2944103525 doi "https://doi.org/10.3390/molecules24112097" @default.
- W2944103525 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6600179" @default.
- W2944103525 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31159491" @default.
- W2944103525 hasPublicationYear "2019" @default.
- W2944103525 type Work @default.
- W2944103525 sameAs 2944103525 @default.
- W2944103525 citedByCount "29" @default.
- W2944103525 countsByYear W29441035252019 @default.
- W2944103525 countsByYear W29441035252020 @default.
- W2944103525 countsByYear W29441035252021 @default.
- W2944103525 countsByYear W29441035252022 @default.
- W2944103525 countsByYear W29441035252023 @default.
- W2944103525 crossrefType "journal-article" @default.
- W2944103525 hasAuthorship W2944103525A5014370221 @default.
- W2944103525 hasAuthorship W2944103525A5054850069 @default.
- W2944103525 hasAuthorship W2944103525A5064391171 @default.
- W2944103525 hasAuthorship W2944103525A5077254266 @default.
- W2944103525 hasAuthorship W2944103525A5080767725 @default.
- W2944103525 hasBestOaLocation W29441035251 @default.
- W2944103525 hasConcept C116569031 @default.
- W2944103525 hasConcept C119857082 @default.
- W2944103525 hasConcept C135285700 @default.
- W2944103525 hasConcept C14036430 @default.
- W2944103525 hasConcept C151730666 @default.
- W2944103525 hasConcept C154945302 @default.
- W2944103525 hasConcept C170493617 @default.
- W2944103525 hasConcept C17744445 @default.
- W2944103525 hasConcept C199539241 @default.
- W2944103525 hasConcept C2776359362 @default.
- W2944103525 hasConcept C2779343474 @default.
- W2944103525 hasConcept C41008148 @default.
- W2944103525 hasConcept C43587935 @default.
- W2944103525 hasConcept C55493867 @default.
- W2944103525 hasConcept C60644358 @default.